The semi-linear, elliptic PDE AC(epsilon)(u):= -epsilon(2)Delta u+W '(u)=0 is called the Allen-Cahn equation. In this article we will prove the existence of finite energy solution to the Allen-Cahn equation on certain complete, non-compact manifolds. More precisely, suppose Mn+1 (with n+1 >= 3) is a complete Riemannian manifold of finite volume. Then there exists epsilon(0)>0, depending on the ambient Riemannian metric, such that for all 0 < epsilon <= epsilon(0), there exists u(epsilon ): M ->(-1,1) satisfying AC(epsilon)(u(epsilon)) = 0 with the energy E-epsilon(u(epsilon))<infinity and the Morse index Ind(u(epsilon))<= 1. Moreover, 0<lim inf(epsilon -> 0)E(epsilon)(u(epsilon)) <= lim sup(epsilon -> 0)E(epsilon)(u(epsilon)) < infinity. Our result is motivated by the theorem of Chambers-Liokumovich and Song, which says that M contains a complete minimal hypersurface Sigma with 0<H-n(Sigma)<infinity. This theorem can be recovered from our result. (c) 2024 Elsevier Inc. All rights reserved.
机构:
Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R ChinaHunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
Du, Zhuoran
Wang, Liping
论文数: 0引用数: 0
h-index: 0
机构:
E China Normal Univ, Dept Math, Shanghai 200241, Peoples R ChinaHunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
机构:
Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R ChinaHunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
Du, Zhuoran
Lai, Baishun
论文数: 0引用数: 0
h-index: 0
机构:
Henan Univ, Inst Contemporary Math, Sch Math & Informat Sci, Kaifeng 475004, Peoples R ChinaHunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
机构:
Shaanxi Univ Sci & Technol, Sch Math & Data Sci, Xian 710021, Peoples R ChinaShaanxi Univ Sci & Technol, Sch Math & Data Sci, Xian 710021, Peoples R China
Li, Jian
Zeng, Jiyao
论文数: 0引用数: 0
h-index: 0
机构:
Shaanxi Univ Sci & Technol, Sch Math & Data Sci, Xian 710021, Peoples R ChinaShaanxi Univ Sci & Technol, Sch Math & Data Sci, Xian 710021, Peoples R China
Zeng, Jiyao
Li, Rui
论文数: 0引用数: 0
h-index: 0
机构:
Shaanxi Normal Univ, Sch Math & Stat, Xian 710119, Peoples R ChinaShaanxi Univ Sci & Technol, Sch Math & Data Sci, Xian 710021, Peoples R China