共 50 条
Cyclic Ether Derived Stable Solid Electrolyte Interphase on Bismuth Anodes for Ultrahigh-Rate Sodium-Ion Storage
被引:4
|作者:
Zhang, Xiaoshan
[1
]
Lin, Jinxin
[1
]
Qiu, Xueqing
[1
,2
,3
]
Lin, Zehua
[1
]
Alshareef, Husam N.
[4
]
Zhang, Wenli
[1
,2
,3
]
机构:
[1] Guangdong Univ Technol GDUT, Sch Chem Engn & Light Ind, 100 Waihuan Xi Rd, Guangzhou 510006, Peoples R China
[2] Guangdong Prov Lab Chem & Fine Chem Engn Jieyang C, Jieyang 515200, Peoples R China
[3] Guangdong Univ Technol, Guangdong Basic Res Ctr Excellence Ecol Secur & Gr, Guangzhou 510006, Peoples R China
[4] King Abdullah Univ Sci & Technol KAUST, Phys Sci & Engn Div, Mat Sci & Engn, Thuwal 239556900, Saudi Arabia
来源:
基金:
中国国家自然科学基金;
关键词:
bismuth anode;
cyclic ether;
rate performance;
solid electrolyte interphase;
D O I:
10.1002/smll.202402915
中图分类号:
O6 [化学];
学科分类号:
0703 ;
摘要:
The bismuth anode has garnered significant attention due to its high theoretical Na-storage capacity (386 mAh g-1). There have been numerous research reports on the stable solid electrolyte interphase (SEI) facilitated by electrolytes utilizing ether solvents. In this contribution, cyclic tetrahydrofuran (THF) and 2-methyltetrahydrofuran (MeTHF) ethers are employed as solvents to investigate the sodium-ion storage properties of bismuth anodes. A series of detailed characterizations are utilized to analyze the impact of electrolyte solvation structure and SEI chemical composition on the kinetics of sodium-ion storage. The findings reveal that bismuth anodes in both THF and MeTHF-based electrolytes exhibit exceptional rate performance at low current densities, but in THF-based electrolytes, the reversible capacity is higher at high current densities (316.7 mAh g-1 in THF compared to 9.7 mAh g-1 in MeTHF at 50 A g-1). This stark difference is attributed to the formation of an inorganic-rich, thin, and uniform SEI derived from THF-based electrolyte. Although the SEI derived from MeTHF-based electrolyte also consists predominantly of inorganic components, it is thicker and contains more organic species compared to the THF-derived SEI, impeding charge transfer and ion diffusion. This study offers valuable insights into the utilization of cyclic ether electrolytes for Na-ion batteries. This study presents the origin of the difference of high-rate performances of Bi anode using THF and MeTHF-based electrolytes. This difference is attributed to the formation of an inorganic-rich, thin, and uniform SEI derived from THF-based electrolytes, and more organic species in the SEI derived from MeTHF-based electrolytes. image
引用
收藏
页数:11
相关论文