Concentration limit for non-local dissipative convection-diffusion kernels on the hyperbolic space

被引:0
|
作者
Gonzalez, Maria del Mar [1 ,2 ]
Ignat, Liviu I. [3 ,4 ]
Manea, Dragons [3 ,4 ]
Moroianu, Sergiu [3 ,5 ]
机构
[1] Univ Autonoma Madrid, Dept Matemat, Madrid, Spain
[2] ICMAT, Madrid 28049, Spain
[3] Romanian Acad, Inst Math Sim Stoilow, 21 Calea Grivitei St, Bucharest 010702, Romania
[4] Univ Bucharest, Res Inst Univ Bucharest ICUB, 90-92 Sos Panduri,5th Dist, Bucharest, Romania
[5] Univ Bucuresti, Fac Matemat, Str Acad 14, Bucharest, Romania
关键词
Non-local convection-diffusion; Dissipative kernels; Hyperbolic space; Convergence of non-local equations to local equations; Functions invariant to Riemannian geodesic flow; HEAT KERNEL; EQUATION;
D O I
10.1016/j.na.2024.113618
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a non-local evolution equation on the hyperbolic space H N . We first consider a model for particle transport governed by a non-local interaction kernel defined on the tangent bundle and invariant under the geodesic flow. We study the relaxation limit of this model to a local transport problem, as the kernel gets concentrated near the origin of each tangent space. Under some regularity and integrability conditions on the kernel, we prove that the solution of the rescaled non-local problem converges to that of the local transport equation. Then, we construct a large class of interaction kernels that satisfy those conditions. We also consider a non-local, non-linear convection-diffusion equation on H N governed by two kernels, one for each of the diffusion and convection parts, and we prove that the solution converges to the solution of a local problem as the kernels get concentrated. We prove and then use in this sense a compactness tool on manifolds inspired by the work of Bourgain-Brezis-Mironescu.
引用
下载
收藏
页数:28
相关论文
共 50 条
  • [1] Numerical solution of a non-local fractional convection-diffusion equation
    Osorio, F. C.
    Amador, P. A.
    Bedoya, C. A.
    ENTRE CIENCIA E INGENIERIA, 2024, 18 (35): : 25 - 31
  • [2] Robust Numerical Method for Singularly Perturbed Convection-Diffusion Type Problems with Non-local Boundary Condition
    Debela, Habtamu G.
    Woldaregay, Mesfin M.
    Duressa, Gemechis F.
    MATHEMATICAL MODELLING AND ANALYSIS, 2022, 27 (02) : 199 - 214
  • [3] Nonlinear Hyperbolic Equations with Dissipative Temporal and Spatial Non-Local Memory
    Mosna, F.
    Necas, J.
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 1999, 18 (04): : 939 - 951
  • [4] SUPERCONVERGENCE OF DISCONTINUOUS GALERKIN AND LOCAL DISCONTINUOUS GALERKIN SCHEMES FOR LINEAR HYPERBOLIC AND CONVECTION-DIFFUSION EQUATIONS IN ONE SPACE DIMENSION
    Cheng, Yingda
    Shu, Chi-Wang
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 47 (06) : 4044 - 4072
  • [5] Effect of Local and Non-Local Kernels on Heat Transfer of Mixed Convection Flow of the Maxwell Fluid
    Riaz, M.B.
    Atangana, A.
    Asgir, Maryam
    Khan, Muhammad Altaf
    Amsalu Kahsay, Hafte
    Mathematical Problems in Engineering, 2021, 2021
  • [6] Effect of Local and Non-Local Kernels on Heat Transfer of Mixed Convection Flow of the Maxwell Fluid
    Riaz, M. B.
    Atangana, A.
    Asgir, Maryam
    Khan, Muhammad Altaf
    Amsalu Kahsay, Hafte
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [7] Non-local mean denoising in diffusion tensor space
    Su, Baihai
    Liu, Qiang
    Chen, Jie
    Wu, Xi
    EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2014, 8 (02) : 447 - 453
  • [8] EXISTENCE OF WEAK SOLUTIONS TO A CONVECTION-DIFFUSION EQUATION IN A UNIFORMLY LOCAL LEBESGUE SPACE
    Haque, Md. Rabiul
    Ogawa, Takayoshi
    Sato, Ryuichi
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (02) : 677 - 697
  • [9] LOCAL ERROR-ESTIMATES FOR A FINITE-ELEMENT METHOD FOR HYPERBOLIC AND CONVECTION-DIFFUSION EQUATIONS
    FALK, RS
    RICHTER, GR
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (03) : 730 - 754
  • [10] Non-local equations for concentration waves in reacting diffusion systems
    Brener, AM
    Serimbetov, MA
    Musabekova, LM
    Computational Methods and Experimental Measurements XII, 2005, 41 : 93 - 102