Prediction of deep molecular response in chronic myeloid leukemia using supervised machine learning models

被引:0
|
作者
Zad, Zahra [1 ,2 ]
Bonecker, Simone [3 ]
Wang, Taiyao [1 ,2 ]
Zalcberg, Ilana [3 ]
Stelzer, Gustavo T. [4 ]
Sabioni, Bruna [5 ]
Gutiyama, Luciana Mayumi [3 ]
Fleck, Julia L. [6 ]
Paschalidis, Ioannis Ch. [1 ,2 ,7 ,8 ]
机构
[1] Boston Univ, Dept Elect & Comp Engn, Div Syst Engn, Dept Biomed Engn,Fac Comp & Data Sci, Boston, MA 02215 USA
[2] Boston Univ, Hariri Inst Comp & Computat Sci & Engn, Boston, MA 02215 USA
[3] Brazilian Natl Canc Inst INCA, Rio De Janeiro, Brazil
[4] Univ Fed Rio de Janeiro, Inst Med Biochem Leopoldo de Meis, Rio De Janeiro, RJ, Brazil
[5] Univ Fed Rio de Janeiro, Clementino Fraga Filho Univ Hosp, Dept Hematol, Rio De Janeiro, RJ, Brazil
[6] Univ Clermont Auvergne, Ctr CIS, CNRS, Mines St Etienne,UMR LIMOS 6158, St Etienne, France
[7] Boston Univ, Dept Elect & Comp Engn, Dept Biomed Engn, Div Syst Engn, 8 St Marys St, Boston, MA 02215 USA
[8] Boston Univ, Fac Comp & Data Sci, 8 St Marys St, Boston, MA 02215 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
Chronic Myeloid Leukemia (CML); Imatinib (IM); Deep Molecular Response (DMR); Treatment-free remission (TFR); Supervised Machine Learning; IMATINIB; SURVIVAL; CML;
D O I
10.1016/j.leukres.2024.107502
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Deep molecular response in chronic myeloid leukemia
    N C P Cross
    A Hochhaus
    [J]. Leukemia, 2016, 30 : 1632 - 1632
  • [2] Deep molecular response in chronic myeloid leukemia
    Cross, N. C. P.
    Hochhaus, A.
    [J]. LEUKEMIA, 2016, 30 (07) : 1632 - 1632
  • [3] Prediction of complete remission and survival in acute myeloid leukemia using supervised machine learning
    Eckardt, Jan-Niklas
    Rillig, Christoph
    Metzeler, Klaus
    Kramer, Michael
    Stasik, Sebastian
    Georgi, Julia-Annabell
    Heisig, Peter
    Spiekermann, Karsten
    Krug, Utz
    Braess, Jan
    Girlich, Dennis
    Sauerland, Cristina M.
    Woermann, Bernhard
    Herold, Tobias
    Berdel, Wolfgang E.
    Hiddemann, Wolfgang
    Kroschinsky, Frank
    Schetelig, Johannes
    Platzbecker, Uwe
    Mueller-Tidow, Carsten
    Sauer, Tim
    Serve, Hubert
    Baldus, Claudia
    Schaefer-Eckart, Kerstin
    Kaufmann, Martin
    Krause, Stefan
    Haenel, Mathias
    Schliemann, Christoph
    Hanoun, Maher
    Thiede, Christian
    Bornhaeuser, Martin
    Wendt, Karsten
    Middeke, Jan Moritz
    [J]. HAEMATOLOGICA, 2023, 108 (03) : 690 - 704
  • [4] Prediction of Complete Remission and Survival in Acute Myeloid Leukemia Using Supervised Machine Learning
    Eckardt, Jan-Niklas
    Rollig, Christoph
    Kramer, Michael
    Stasik, Sebastian
    Georgi, Julia-Annabell
    Heisig, Peter
    Kroschinsky, Frank P.
    Schetelig, Johannes
    Platzbecker, Uwe
    Mueller-Tidow, Carsten
    Sauer, Tim
    Serve, Hubert
    Baldus, Claudia D.
    Schaefer-Eckart, Kerstin
    Kaufmann, Martin
    Krause, Stefan W.
    Haenel, Mathias
    Schliemann, Christoph
    Hanoun, Maher
    Thiede, Christian
    Bornhaeuser, Martin
    Wendt, Karsten
    Middeke, Jan Moritz
    [J]. BLOOD, 2021, 138
  • [5] Predictive value of early molecular response for deep molecular response in chronic phase of chronic myeloid leukemia
    Wang, Rui
    Cong, Yue
    Li, Caili
    Zhang, Chen
    Lin, Hai
    [J]. MEDICINE, 2019, 98 (15)
  • [6] Why is it critical to achieve a deep molecular response in chronic myeloid leukemia?
    Branford, Susan
    [J]. HAEMATOLOGICA, 2020, 105 (12) : 2730 - 2737
  • [7] Deep Molecular Response in Chronic Myeloid Leukemia: The New Goal of Therapy?
    Mahon, Francois-Xavier
    Etienne, Gabriel
    [J]. CLINICAL CANCER RESEARCH, 2014, 20 (02) : 310 - 322
  • [8] Applications of Machine Learning in Chronic Myeloid Leukemia
    Elhadary, Mohamed
    Elsabagh, Ahmed Adel
    Ferih, Khaled
    Elsayed, Basel
    Elshoeibi, Amgad M.
    Kaddoura, Rasha
    Akiki, Susanna
    Ahmed, Khalid
    Yassin, Mohamed
    [J]. DIAGNOSTICS, 2023, 13 (07)
  • [9] Prediction of Graduate Admission using Multiple Supervised Machine Learning Models
    Bitar, Zain
    Al-Mousa, Amjed
    [J]. IEEE SOUTHEASTCON 2020, 2020,
  • [10] Discovery of Anticancer Hybrid Molecules by Supervised Machine Learning Models and in Vitro Validation in Drug Resistant Chronic Myeloid Leukemia Cells
    Melge, Anu R.
    Parate, Shraddha
    Pavithran, Keechilat
    Koyakutty, Manzoor
    Mohan, C. Gopi
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2022, 62 (04) : 1126 - 1146