Amortized Inference for Heterogeneous Reconstruction in Cryo-EM

被引:0
|
作者
Levy, Axel [1 ]
Wetzstein, Gordon [1 ]
Martel, Julien [1 ]
Poitevin, Frederic [2 ]
Zhong, Ellen D. [3 ]
机构
[1] Stanford Univ, Stanford, CA USA
[2] SLAC Natl Accelerator Lab, Menlo Pk, CA USA
[3] Princeton Univ, Princeton, NJ 08544 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cryo-electron microscopy (cryo-EM) is an imaging modality that provides unique insights into the dynamics of proteins and other building blocks of life. The algorithmic challenge of jointly estimating the poses, 3D structure, and conformational heterogeneity of a biomolecule from millions of noisy and randomly oriented 2D projections in a computationally efficient manner, however, remains unsolved. Our method, cryoFIRE, performs ab initio heterogeneous reconstruction with unknown poses in an amortized framework, thereby avoiding the computationally expensive step of pose search while enabling the analysis of conformational heterogeneity. Poses and conformation are jointly estimated by an encoder while a physics-based decoder aggregates the images into an implicit neural representation of the conformational space. We show that our method can provide one order of magnitude speedup on datasets containing millions of images without any loss of accuracy. We validate that the joint estimation of poses and conformations can be amortized over the size of the dataset. For the first time, we prove that an amortized method can extract interpretable dynamic information from experimental datasets.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Amortized identification of biomolecular conformations in Cryo-EM using simulation-based inference
    Dingeldein, Lars
    Silva-Sanchez, David
    Dimprima, Edoardo
    Grigorieff, Nikolaus
    Covino, Roberto
    Cossio, Pilar
    BIOPHYSICAL JOURNAL, 2024, 123 (03) : 282A - 282A
  • [2] CryoAI: Amortized Inference of Poses for Ab Initio Reconstruction of 3D Molecular Volumes from Real Cryo-EM Images
    Levy, Axel
    Poitevin, Frederic
    Martel, Julien
    Nashed, Youssef
    Peck, Ariana
    Miolane, Nina
    Ratner, Daniel
    Dunne, Mike
    Wetzstein, Gordon
    COMPUTER VISION, ECCV 2022, PT XXI, 2022, 13681 : 540 - 557
  • [3] CryoAl: Amortized Inference of Poses for Ab Initio Reconstruction of 3D Molecular Volumes from Experimental Cryo-EM Images
    Poitevin, Frederic
    Levy, Axel
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2022, 78 : A228 - A228
  • [4] CryoSTAR: leveraging structural priors and constraints for cryo-EM heterogeneous reconstruction
    Li, Yilai
    Zhou, Yi
    Yuan, Jing
    Ye, Fei
    Gu, Quanquan
    NATURE METHODS, 2024, 21 (12) : 2318 - 2326
  • [5] CryoDRGN: reconstruction of heterogeneous cryo-EM structures using neural networks
    Zhong, Ellen D.
    Bepler, Tristan
    Berger, Bonnie
    Davis, Joseph H.
    NATURE METHODS, 2021, 18 (02) : 176 - +
  • [6] CryoDRGN: reconstruction of heterogeneous cryo-EM structures using neural networks
    Ellen D. Zhong
    Tristan Bepler
    Bonnie Berger
    Joseph H. Davis
    Nature Methods, 2021, 18 : 176 - 185
  • [7] Fast multiscale reconstruction for Cryo-EM
    Donati, Laurene
    Nilchian, Masih
    Sorzano, Carlos Oscar S.
    Unser, Michael
    JOURNAL OF STRUCTURAL BIOLOGY, 2018, 204 (03) : 543 - 554
  • [8] Cryo-EM Workshop: Lectures on Cryo-EM Image Formation and 3-D Reconstruction
    Jiang, Wen
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2019, 75 : A256 - A256
  • [9] Sparse Fourier Backpropagation in Cryo-EM Reconstruction
    Kimanius, Dari
    Jamali, Kiarash
    Scheres, Sjors H. W.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [10] Confidence maps: statistical inference of cryo-EM maps
    Beckers, Maximilian
    Palmer, Colin M.
    Sachse, Carsten
    ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2020, 76 : 332 - 339