Fractional Fischer decompositions by inframonogenic functions

被引:1
|
作者
Santiesteban, Daniel Alfonso [1 ]
Blaya, Ricardo Abreu [1 ,2 ]
Perez, Yudier Pena [1 ]
Almira, Jose Maria Sigarreta [1 ]
机构
[1] Univ Autonoma Guerrero, Fac Matemat, Chilpancingo De Los Bravo, Mexico
[2] Univ UTE, Quito, Ecuador
关键词
Clifford analysis; Fischer decomposition; Inframonogenic functions; Fractional calculus; CLIFFORD; OPERATOR;
D O I
10.1016/j.jmaa.2024.128468
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Inframonogenic functions can be viewed as a non -commutative version of the more traditional harmonic functions. In this paper we obtain a new Fischer decomposition for homogeneous polynomials in R m in terms of ( phi, psi )-inframonogenic homogeneous polynomials. The latter being a natural generalization arising when structural sets phi , psi are considered instead of the standard orthonormal basis of R m . Moreover, we extend our results to the fractional context by means of the Caputo derivative and Weyl relations. (c) 2024 Elsevier Inc. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条