Attainment of large thermal hysteresis and good thermal cyclic stability in multi-component TiHfZrNi alloys

被引:1
|
作者
Pang, Jianbo [1 ]
Tian, Jin [1 ]
Dang, Pengfei [1 ]
Wang, Zhangjie [1 ]
Zhou, Yumei [1 ]
Ding, Xiangdong [1 ]
Sun, Jun [1 ]
Xue, Dezhen [1 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
High entropy alloys; Lattice compatibility; Solid solution strengthening; Chemical short-range ordered structures; Shape memory alloys; SHAPE-MEMORY ALLOYS; SHORT-RANGE ORDER; NI-RICH NITIHF; MARTENSITIC-TRANSFORMATION; PHASE-TRANSFORMATION; CU ADDITION; TEMPERATURE; MICROSTRUCTURE; COMPATIBILITY; FATIGUE;
D O I
10.1016/j.scriptamat.2024.116164
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Shape memory alloys (SMAs) hold great promise for phase-change-based energy storage, demanding attainment of both large thermal hysteresis and good thermal cyclic stability. Nevertheless, these two properties are often mutually exclusive. Here, we developed a multicomponent Ti33Hf15Zr5Ni47 alloy that exhibits a large hysteresis of 44.6 degrees C and a small transformation temperature shift of 0.5 degrees C after 20 thermal cycles. This performance is superior for applications in thermal management, surpassing most TiNi-based SMAs. The presence of Hf and Zr atoms with a larger size increases the lattice mismatch between the austenite and martensite phases, thereby enlarging the thermal hysteresis. Simultaneously, these atoms tend to form heterogeneous lattice strains and chemical short-range order, strengthening the matrix. As a result, fewer defects accumulate during thermal cycling, leading to good thermal cyclic stability. Multicomponent high-entropy SMAs provide an alternative approach to balancing conflicting properties such as large thermal hysteresis and good thermal cyclic stability.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Lattice thermal conductivity of multi-component alloys
    Caro, M.
    Beland, L. K.
    Samolyuk, G. D.
    Stoller, R. E.
    Caro, A.
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 648 : 408 - 413
  • [2] Intrinsic diffusivities and thermal stability of multi-component coatings
    Datta, PK
    Filipek, R
    Danielewski, A
    Bachorczyk, R
    Best, R
    Rakowska, A
    [J]. HIGH TEMPERATURE MATERIALS CHEMISTRY, PTS I AND II, PROCEEDINGS, 2000, 15 : 617 - 620
  • [3] Prognosis of surface composition variation of multi-component alloys during thermal actions
    Gilmutdinov, FZ
    Kanunnikova, OM
    [J]. FIZIKA METALLOV I METALLOVEDENIE, 1997, 84 (02): : 78 - 88
  • [4] Thermal stresses in multi-component anisotropic materials
    Ceniga, Ladislav
    [J]. MECCANICA, 2015, 50 (09) : 2421 - 2430
  • [5] Thermal stresses in multi-component anisotropic materials
    Ladislav Ceniga
    [J]. Meccanica, 2015, 50 : 2421 - 2430
  • [6] Thermal structural stability of a multi-component olivine electrode for lithium ion batteries
    Park, Kyu-Young
    Kim, Hyungsub
    Lee, Seongsu
    Kim, Jongsoon
    Hong, Jihyun
    Lim, Hee-Dae
    Parkab, Inchul
    Kang, Kisuk
    [J]. CRYSTENGCOMM, 2016, 18 (39): : 7463 - 7470
  • [7] Integrated Thermal and Metallurgical Simulation Framework for Selective Laser Melting Multi-Component and Multi-Phase Alloys
    Kong, Haohao
    Hou, Yaqing
    Qin, Hailong
    Xie, Jinli
    Bi, Zhongnan
    Su, Hang
    [J]. PROCESSES, 2023, 11 (12)
  • [8] Substitute thermal conductivity coefficient for multi-component ceramic materials
    Ignaszak, Z
    [J]. JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2003, 143 : 748 - 751
  • [9] Comparison of expressions of thermal diffusion phenomena in multi-component mixture
    Kobayashi, N
    Yamamoto, I
    [J]. JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY, 1997, 34 (01) : 73 - 79
  • [10] Isotopic approximation to thermal diffusion coefficients in multi-component mixture
    Kobayashi, N
    Yamakawa, H
    Yamamoto, I
    [J]. JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY, 1997, 34 (04) : 394 - 397