Lithium-Ion Batteries under the X-ray Lens: Resolving Challenges and Propelling Advancements

被引:0
|
作者
Samimi, Mahdieh [1 ]
Saadabadi, Mehran [2 ]
Hosseinlaghab, Hassan
机构
[1] Dublin City Univ, Sch Elect Engn, Dublin D09W6Y4, Ireland
[2] Amirkabir Univ Technol, Mech Engn Dept, Tehran 1591634311, Iran
关键词
X-ray spectroscopy; lithium-ion batteries; SEI; degradation; thermal runaway; heterogeneity; cracks; LI-ION; ELECTROCHEMICAL PERFORMANCE; MECHANICAL DEGRADATION; METAL ANODES; STATE; ELECTRODE; OPERANDO; TOMOGRAPHY; INTERFACES; BEHAVIOR;
D O I
10.3390/qubs8020010
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The quest for high-performance lithium-ion batteries (LIBs) is at the forefront of energy storage research, necessitating a profound understanding of intricate processes like phase transformations and thermal runaway events. This review paper explores the pivotal role of X-ray spectroscopies in unraveling the mysteries embedded within LIBs, focusing on the utilization of advanced techniques for comprehensive insights. This explores recent advancements in in situ characterization tools, prominently featuring X-ray diffraction (XRD), X-ray tomography (XRT), and transmission X-ray microscopy (TXM). Each technique contributes to a comprehensive understanding of structure, morphology, chemistry, and kinetics in LIBs, offering a selective analysis that optimizes battery electrodes and enhances overall performance. The investigation commences by highlighting the indispensability of tracking phase transformations. Existing challenges in traditional methods, like X-ray absorption spectroscopy (XAS), become evident when faced with nanoscale inhomogeneities during the delithiation process. Recognizing this limitation, the review emphasizes the significance of advanced techniques featuring nanoscale resolution. These tools offer unprecedented insights into material structures and surface chemistry during LIB operation, empowering researchers to address the challenges posed by thermal runaway. Such insights prove critical in unraveling interfacial transport mechanisms and phase transformations, providing a roadmap for the development of safe and high-performance energy storage systems. The integration of X-ray spectroscopies not only enhances our understanding of fundamental processes within LIBs but also propels the development of safer, more efficient, and reliable energy storage solutions. In spite of those benefits, X-ray spectroscopies have some limitations in regard to studying LIBs, as referred to in this review.
引用
收藏
页数:33
相关论文
共 50 条
  • [1] Advancements and challenges in polymer-based separators for lithium-ion batteries
    Trinh, Hoang Nghia
    Eesaee, Mostafa
    Shahgaldi, Samaneh
    Singh, Jaspal
    Hoang, Thi Linh Giang
    Nguyen-Tri, Phuong
    ENERGY STORAGE MATERIALS, 2025, 77
  • [2] Electrochemical in situ X-ray probing in lithium-ion and sodium-ion batteries
    Guobin Zhang
    Tengfei Xiong
    Liang He
    Mengyu Yan
    Kangning Zhao
    Xu Xu
    Liqiang Mai
    Journal of Materials Science, 2017, 52 : 3697 - 3718
  • [3] Electrochemical in situ X-ray probing in lithium-ion and sodium-ion batteries
    Zhang, Guobin
    Xiong, Tengfei
    He, Liang
    Yan, Mengyu
    Zhao, Kangning
    Xu, Xu
    Mai, Liqiang
    JOURNAL OF MATERIALS SCIENCE, 2017, 52 (07) : 3697 - 3718
  • [4] Double Transfer Learning to Detect Lithium-Ion Batteries on X-Ray Images
    Rohrschneider, David
    Abou Baker, Nermeen
    Handmann, Uwe
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2023, PT I, 2023, 14134 : 175 - 188
  • [5] In situ X-ray diffraction and X-ray absorption studies of high-rate lithium-ion batteries
    Balasubramanian, M
    Sun, X
    Yang, XQ
    McBreen, J
    JOURNAL OF POWER SOURCES, 2001, 92 (1-2) : 1 - 8
  • [6] Lithium and Lithium-Ion Batteries: Challenges and Prospects
    Passerini, Stefano
    Scrosati, Bruno
    ELECTROCHEMICAL SOCIETY INTERFACE, 2016, 25 (03): : 84 - 86
  • [7] In Situ/Operando (Soft) X-ray Spectroscopy Study of Beyond Lithium-ion Batteries
    Yang, Feipeng
    Feng, Xuefei
    Liu, Y. -Sheng
    Kao, Li Cheng
    Glans, P. -A.
    Yang, Wanli
    Guo, Jinghua
    ENERGY & ENVIRONMENTAL MATERIALS, 2021, 4 (02) : 139 - 157
  • [8] In Situ/Operando(Soft) X-ray Spectroscopy Study of Beyond Lithium-ion Batteries
    Feipeng Yang
    Xuefei Feng
    YiSheng Liu
    Li Cheng Kao
    PerAnders Glans
    Wanli Yang
    Jinghua Guo
    Energy & Environmental Materials, 2021, (02) : 139 - 157
  • [9] Estimation of remaining capacity of lithium-ion batteries based on X-ray computed tomography
    Hou, Junwei
    Wu, Weichuang
    Li, Lifu
    Tong, Xin
    Hu, Renjun
    Wu, Weibin
    Cai, Weizhi
    Wang, Hailin
    JOURNAL OF ENERGY STORAGE, 2022, 55
  • [10] Analysis of hard carbon for lithium-ion batteries by hard X-ray photoelectron spectroscopy
    Hori, Hironobu
    Shikano, Masahiro
    Kobayashi, Hironori
    Koike, Shinji
    Sakaebe, Hikari
    Saito, Yoshiyasu
    Tatsumi, Kuniaki
    Yoshikawa, Hideki
    Ikenaga, Eiji
    JOURNAL OF POWER SOURCES, 2013, 242 : 844 - 847