Prediction of Customer Churn Behavior in the Telecommunication Industry Using Machine Learning Models

被引:0
|
作者
Chang, Victor [1 ]
Hall, Karl [2 ]
Xu, Qianwen Ariel [1 ]
Amao, Folakemi Ololade [2 ]
Ganatra, Meghana Ashok [1 ]
Benson, Vladlena [1 ]
机构
[1] Aston Univ, Aston Business Sch, Dept Operat & Informat Management, Birmingham B4 7ET, England
[2] Teesside Univ, Sch Comp Engn & Digital Technol, Middlesbrough TS1 3BX, England
关键词
customer churn prediction; machine learning; explainable AI; ensemble learning; predictive analytics; BIG DATA; ALGORITHM;
D O I
10.3390/a17060231
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Customer churn is a significant concern, and the telecommunications industry has the largest annual churn rate of any major industry at over 30%. This study examines the use of ensemble learning models to analyze and forecast customer churn in the telecommunications business. Accurate churn forecasting is essential for successful client retention initiatives to combat regular customer churn. We used innovative and improved machine learning methods, including Decision Trees, Boosted Trees, and Random Forests, to enhance model interpretability and prediction accuracy. The models were trained and evaluated systematically by using a large dataset. The Random Forest model performed best, with 91.66% predictive accuracy, 82.2% precision, and 81.8% recall. Our results highlight how well the model can identify possible churners with the help of explainable AI (XAI) techniques, allowing for focused and timely intervention strategies. To improve the transparency of the decisions made by the classifier, this study also employs explainable artificial intelligence methods such as LIME and SHAP to illustrate the results of the customer churn prediction model. Our results demonstrate how crucial it is for customer relationship managers to implement strong analytical tools to reduce attrition and promote long-term economic viability in fiercely competitive marketplaces. This study indicates that ensemble learning models have strategic implications for improving consumer loyalty and organizational profitability in addition to confirming their performance.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Customer Churn Prediction In Telecommunication Industry Using Machine Learning Classifiers
    Mohammad, Nurul Izzati
    Ismail, Saiful Adli
    Kama, Mohd Nazri
    Yusop, Othman Mohd
    Azmi, Azri
    [J]. ICVISP 2019: PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON VISION, IMAGE AND SIGNAL PROCESSING, 2019,
  • [2] Regression-Based Machine Learning Framework for Customer Churn Prediction in Telecommunication Industry
    Ele, Sylvester Igbo
    Alo, Uzoma Rita
    Nweke, Henry Friday
    Ofem, Ajah Ofem
    [J]. JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2023, 14 (05) : 1046 - 1055
  • [3] Explaining customer churn prediction in telecom industry using tabular machine learning models
    Poudel, Sumana Sharma
    Pokharel, Suresh
    Timilsina, Mohan
    [J]. MACHINE LEARNING WITH APPLICATIONS, 2024, 17
  • [4] Customer churn prediction in telecommunication industry using data certainty
    Amin, Adnan
    Al-Obeidat, Feras
    Shah, Babar
    Adnan, Awais
    Loo, Jonathan
    Anwar, Sajid
    [J]. JOURNAL OF BUSINESS RESEARCH, 2019, 94 : 290 - 301
  • [5] ChurnNet: Deep Learning Enhanced Customer Churn Prediction in Telecommunication Industry
    Saha, Somak
    Saha, Chamak
    Haque, Md. Mahidul
    Alam, Md. Golam Rabiul
    Talukder, Ashis
    [J]. IEEE ACCESS, 2024, 12 : 4471 - 4484
  • [6] Study of machine learning methods for customer churn prediction in telecommunication company
    Sniegula, Anna
    Poniszewska-Maranda, Aneta
    Popovic, Milan
    [J]. IIWAS2019: THE 21ST INTERNATIONAL CONFERENCE ON INFORMATION INTEGRATION AND WEB-BASED APPLICATIONS & SERVICES, 2019, : 640 - 644
  • [7] Customer Churn Prediction by Classification Models in Machine Learning
    Zhao, Heng
    Zuo, Xumin
    Xie, Yuanyuan
    [J]. 2022 9TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING (ICEEE 2022), 2022, : 399 - 407
  • [8] Machine Learning Models for Customer Churn Risk Prediction
    Akan, Oguzhan
    Verma, Abhishek
    [J]. 2022 IEEE 13TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2022, : 623 - 628
  • [9] Customer churn prediction in telecommunication industry using data mining methods
    Meghyasi, Homa
    Rad, Abas
    [J]. REVISTA INNOVACIENCIA, 2020, 8 (01):
  • [10] Customer Churn Prediction Based on HMM in Telecommunication Industry
    Zhu, Huisheng
    Yu, Bin
    [J]. FUZZY SYSTEMS AND DATA MINING VI, 2020, 331 : 78 - 92