A study on sustainable foam concrete with waste polyester and ceramic powder: Properties and durability

被引:0
|
作者
Bayraktar, Oguzhan Yavuz [1 ]
Tunctan, Mustafa [1 ]
Benli, Ahmet [2 ]
Turkel, Ihsan [1 ]
Kizilay, Goezde
Kaplan, Gokhan [3 ]
机构
[1] Kastamonu Univ, Civil Engn Dept, TR-37150 Kastamonu, Turkiye
[2] Bingol Univ, Civil Engn Dept, TR-12100 Bingol, Turkiye
[3] Ataturk Univ, Civil Engn Dept, TR-25030 Erzurum, Turkiye
来源
关键词
Foam concrete; Ceramic powder; Waste polyester; Thermal; Strength; Durability; SELF-COMPACTING MORTARS; HIGH-STRENGTH CONCRETE; FLY-ASH; PERFORMANCE; FIBER; RESISTANCE; REPLACEMENT; SORPTIVITY;
D O I
10.1016/j.jobe.2024.110253
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The textile and apparel sectors currently produce millions of tons of textile waste annually on a global scale. Textile waste fibers are a viable option for sustainability as they can be utilized to reinforce cement-based composites internally by improving ductility and reducing the development of cracks. The issue of ceramic waste accumulation can be effectively resolved by using ceramic waste as supplementary cementitious materials (SCM), for sustainable construction, which also lowers energy use and CO2 emissions during the cement manufacturing process. This study evaluated the fresh, physico-mechanical, durability, and thermal characteristics of foam concrete (FC) reinforced with waste polyester (WP) incorporating waste ceramic powder (CP) as a replacement of cement in the rates of 0, 10 and 20%. Twelve mixtures with a 0.3 water/binder (w/b) ratio were fabricated using a sodium lauryl sulfate foaming agent. The WP used in this study have four percentages of 0, 0.2, 0.4 and 0.6 % by volume. Durability performance of the mixtures for dry shrinkage, sulfate attack, high temperatures, alkali silica reaction and freeze-thaw cycles was also carried out. Microstructure of the mixtures was analyzed by SEM. Cost investigation and environmental impact of FC mixtures were also investigated. The findings indicated that the mixture with 10% CP and 0.6% WP had the largest 28-day compressive strength of 8.78 MPa, representing a 47 % decrease over the reference mixture (without CP and WP). The same mixture also exhibited the lowest dry shrinkage after the reference mixture. The mixture containing 0%CP and 0.2WP had the lowest thermal conductivity with a reduction of 74.0 % as per the reference mixture. The 0.4 % WP and 0%CP incorporated mixture exhibited the best thermal and F-T performance.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Mechanical Properties and Durability of Sustainable Concrete Manufactured Using Ceramic Waste: A Review
    Zhang, Peng
    Zhang, Peishuo
    Wu, Jingjiang
    Guo, Zhenhui
    Zhang, Yong
    Zheng, Yuanxun
    JOURNAL OF RENEWABLE MATERIALS, 2023, 11 (02) : 937 - 974
  • [2] Durability properties of ceramic waste based concrete
    Golla, Swamy Yadav
    Amer, Mohammed
    Sampeta, Ramya
    Ghotiya, Suresh
    Jessica, J.
    MATERIALS TODAY-PROCEEDINGS, 2022, 66 : 2282 - 2287
  • [3] Sustainable reuse of ceramic waste powder as a supplementary cementitious material in recycled aggregate concrete: Mechanical properties, durability and microstructure assessment
    Chen, Xuyong
    Zhang, Di
    Cheng, Shukai
    Xu, Xiong
    Zhao, Cheng
    Wang, Xiangqing
    Wu, Qiaoyun
    Bai, Xixuan
    JOURNAL OF BUILDING ENGINEERING, 2022, 52
  • [4] Regression and ANN models for durability and mechanical characteristics of waste ceramic powder high performance sustainable concrete
    Behforouz, Babak
    Memarzadeh, Parham
    Eftekhar, Mohammadreza
    Fathi, Farshid
    COMPUTERS AND CONCRETE, 2020, 25 (02): : 119 - 132
  • [5] Durability and microstructure aspects of sustainable concrete made with ceramic waste: a review
    Ahmad, Jawad
    Sabri, Mohanad Muayad
    Majdi, Ali
    Alattyih, Wael
    Khan, Inamullah
    Alam, Muhammad
    Frontiers in Materials, 2024, 11
  • [6] Properties and modification of sustainable foam concrete including eco-friendly recycled powder from concrete waste
    Yang, Dingyi
    Liu, Miao
    Zhang, Zhibin
    Yao, Pengpeng
    Ma, Zhiming
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2022, 16
  • [7] Sustainable reuse of waste ceramic tiles powder and waste brick powder as a replacement for cement on green high strength concrete properties
    Tawfik, Taher A.
    Sicakova, Alena
    Kuzielova, Eva
    Kusnir, Stefan
    Estokova, Adriana
    Balintova, Magdalena
    Junakova, Natalia
    INNOVATIVE INFRASTRUCTURE SOLUTIONS, 2024, 9 (05)
  • [8] Concrete made from ceramic industry waste: Durability properties
    Senthamarai, R. M.
    Manoharan, P. Devadas
    Gobinath, D.
    CONSTRUCTION AND BUILDING MATERIALS, 2011, 25 (05) : 2413 - 2419
  • [9] Durability properties of lightweight concrete with ceramic mold casting waste
    Jia, Zhiyou
    Aguiar, Jose
    Cunha, Sandra
    Jesus, Carlos
    Castro, Fernando
    MAGAZINE OF CONCRETE RESEARCH, 2023, 76 (11) : 548 - 556
  • [10] Strength and durability studies on high strength concrete using ceramic waste powder
    Karthikeyan, B.
    Dhinakaran, G.
    STRUCTURAL ENGINEERING AND MECHANICS, 2017, 61 (02) : 171 - 181