Deformable current-prior registration of DCE breast MR images on multi-site data

被引:0
|
作者
Geissler, Kai [1 ]
Ambroladze, Ani [2 ]
Papenberg, Nils [1 ]
Koller, Tom L. [1 ,2 ]
Amer, Heba [3 ,4 ]
Fallenberg, Eva Maria [3 ]
Kurt, Seda Aladag [5 ]
Ingrisch, Michael [6 ,7 ]
Hahn, Horst K. [1 ,2 ]
机构
[1] Fraunhofer Inst Digital Med MEVIS, Bremen, Germany
[2] Univ Bremen, Bremen, Germany
[3] Tech Univ Munich, TUM Sch Med & Hlth, Dept Diagnost & Intervent Radiol, Klinikum Rechts Isar, Munich, Germany
[4] Zagazig Univ, Univ Hosp, Dept Radiol, Zagazig, Egypt
[5] Istanbul Univ Cerrahpasa, Fac Med, Istanbul, Turkiye
[6] Ludwig Maximilians Univ Munchen, Univ Hosp, Dept Radiol, Munich, Germany
[7] Munich Ctr Machine Learning MCML, Munich, Germany
来源
关键词
Registration; Application: Breast; Longitudinal data; Modality: MRI;
D O I
10.1117/12.3006738
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Recent studies indicate that malignant breast lesions can be predicted from structural changes in prior exams of preventive breast MRI examinations. Due to non-rigid deformation between studies, spatial correspondences between structures in two consecutive studies are lost. Thus, deformable image registration can contribute to predicting individual cancer risks. This study evaluates a registration approach based on a novel breast mask segmentation and non-linear image registration based on data from 5 different sites. The landmark error (mean +/- standard deviation [1st quartile, 3rd quartile]), annotated by three radiologists, is 2.9 +/- 2.8 [1.3, 3.2] mm when leaving out two outlier cases from the evaluation for which the registration failed completely. We assess the inter-observer variabilities of keypoint errors and find an error of 3.6 +/- 4.7 [1.6, 4.0] mm, 4.4 +/- 4.9 [1.8, 4.8] mm, and 3.8 +/- 4.0 [1.7, 4.1] mm when comparing each radiologist to the mean keypoints of the other two radiologists. Our study shows that the current state of the art in registration is well suited to recover spatial correspondences of structures in cancerous and non-cancerous cases, despite the high level of difficulty of this task.
引用
收藏
页数:12
相关论文
共 23 条
  • [1] GROUPWISE REGISTRATION OF BREAST DCE-MR IMAGES FOR ACCURATE TUMOR MEASUREMENT
    Kim, Minjeong
    Wu, Guorong
    Shen, Dinggang
    2011 8TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, 2011, : 598 - 601
  • [2] Registration of DCE MR images for computer-aided diagnosis of breast cancer
    Wu, Qiu
    Whitman, Gary J.
    Fussell, Donald S.
    Markey, Mia K.
    2006 FORTIETH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, VOLS 1-5, 2006, : 826 - +
  • [3] Improved registration of DCE-MR images of the liver using a prior segmentation of the region of interest
    Zhang, Tian
    Li, Zhang
    Runge, Jurgen H.
    Lavini, Cristina
    Stoker, Jaap
    van Gulik, Thomas
    van Vliet, Lucas J.
    Vos, Frans M.
    MEDICAL IMAGING 2016: IMAGE PROCESSING, 2016, 9784
  • [4] Robust multi-site MR data processing: iterative optimization of bias correction, tissue classification, and registration
    Kim, Eun Young
    Johnson, Hans J.
    FRONTIERS IN NEUROINFORMATICS, 2013, 7
  • [5] Multi-site harmonization of diffusion MRI data in a registration framework
    Mirzaalian, Hengameh
    Ning, Lipeng
    Savadjiev, Peter
    Pasternak, Ofer
    Bouix, Sylvain
    Michailovich, Oleg
    Karmacharya, Sarina
    Grant, Gerald
    Marx, Christine E.
    Morey, Rajendra A.
    Flashman, Laura A.
    George, Mark S.
    McAllister, Thomas W.
    Andaluz, Norberto
    Shutter, Lori
    Coimbra, Raul
    Zafonte, Ross D.
    Coleman, Mike J.
    Kubicki, Marek
    Westin, Carl-Fredrik
    Stein, Murray B.
    Shenton, Martha E.
    Rathi, Yogesh
    BRAIN IMAGING AND BEHAVIOR, 2018, 12 (01) : 284 - 295
  • [6] Multi-site harmonization of diffusion MRI data in a registration framework
    Hengameh Mirzaalian
    Lipeng Ning
    Peter Savadjiev
    Ofer Pasternak
    Sylvain Bouix
    Oleg Michailovich
    Sarina Karmacharya
    Gerald Grant
    Christine E. Marx
    Rajendra A. Morey
    Laura A. Flashman
    Mark S. George
    Thomas W. McAllister
    Norberto Andaluz
    Lori Shutter
    Raul Coimbra
    Ross D. Zafonte
    Mike J. Coleman
    Marek Kubicki
    Carl-Fredrik Westin
    Murray B. Stein
    Martha E. Shenton
    Yogesh Rathi
    Brain Imaging and Behavior, 2018, 12 : 284 - 295
  • [7] A fast alignment method for breast MRI follow-up studies using automated breast segmentation and current-prior registration
    Wang, Lei
    Strehlow, Jan
    Ruehaak, Jan
    Weiler, Florian
    Diez, Yago
    Gubern-Merida, Albert
    Diekmann, Susanne
    Laue, Hendrik
    Hahn, Horst K.
    MEDICAL IMAGING 2015: IMAGE PROCESSING, 2015, 9413
  • [8] Hierarchical alignment of breast DCE-MR images by groupwise registration and robust feature matching
    Kim, Minjeong
    Wu, Guorong
    Shen, Dinggang
    MEDICAL PHYSICS, 2012, 39 (01) : 353 - 366
  • [9] Finite-element deformable sheet-curve models for registration of breast MR images
    Xuan, JH
    Freedman, M
    Wang, Y
    MEDICAL IMAGING 2003: IMAGE PROCESSING, PTS 1-3, 2003, 5032 : 165 - 176
  • [10] Classification of multi-site MR images in the presence of heterogeneity using multi-task learning
    Ma, Qiongmin
    Zhang, Tianhao
    Zanetti, Marcus, V
    Shen, Hui
    Satterthwaite, Theodore D.
    Wolf, Daniel H.
    Gur, Raquel E.
    Fan, Yong
    Hu, Dewen
    Busatto, Geraldo F.
    Davatzikos, Christos
    NEUROIMAGE-CLINICAL, 2018, 19 : 476 - 486