SPCTNet: A Series-Parallel CNN and Transformer Network for 3D Medical Image Segmentation

被引:0
|
作者
Yu, Bin [1 ]
Zhou, Quan [1 ]
Zhang, Xuming [1 ]
机构
[1] Huazhong Univ Sci & Technol, Dept Biomed Engn, Coll Life Sci & Technol, Wuhan, Peoples R China
来源
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Deep learning; 3D Medical image segmentation; Transformer;
D O I
10.1007/978-981-99-8850-1_31
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Medical image segmentation is crucial for lesion localization and surgical navigation. Recent advancements in medical image segmentation have been driven by Convolutional Neural Networks (CNNs) and Transformers. However, CNNs have limitations in capturing long-range dependencies due to their weight sharing and localized receptive fields, posing challenges in handling varying organ shapes. While Transformers offer an alternative with global receptive fields, their spatial and computational complexity is particularly high, especially for 3D medical images. To address this issue, we propose a novel series-parallel network that combines convolution and self-attention for 3D medical image segmentation. We utilize a serial 3D CNN as the encoder to extract multi-level feature maps, which are fused via a feature pyramid network. Subsequently, we adopt four parallel Transformer branches to capture global features. To efficiently model long-range information, we introduce patch self-attention, which divides the input into non-overlapping patches and computes attention between corresponding pixels across patches. Experimental evaluations on 3D MRI prostate and left atrial segmentation tasks confirm the superior performance of our network compared to other CNN and Transformer-based networks. Notably, our method achieves higher segmentation accuracy and faster inference speed.
引用
收藏
页码:376 / 387
页数:12
相关论文
共 50 条
  • [1] CoTr: Efficiently Bridging CNN and Transformer for 3D Medical Image Segmentation
    Xie, Yutong
    Zhang, Jianpeng
    Shen, Chunhua
    Xia, Yong
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT III, 2021, 12903 : 171 - 180
  • [2] Hybrid transformer-CNN with boundary-awareness network for 3D medical image segmentation
    He, Jianfei
    Xu, Canhui
    APPLIED INTELLIGENCE, 2023, 53 (23) : 28542 - 28554
  • [3] Hybrid transformer-CNN with boundary-awareness network for 3D medical image segmentation
    Jianfei He
    Canhui Xu
    Applied Intelligence, 2023, 53 : 28542 - 28554
  • [4] Dual Channel‐Spatial Self‐Attention Transformer and CNN synergy network for 3D medical image segmentation
    Yang, Fan
    Wang, Bo
    Applied Soft Computing, 2024, 167
  • [5] A Transformer-Based Network for Anisotropic 3D Medical Image Segmentation
    Guo, Danfeng
    Terzopoulos, Demetri
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 8857 - 8861
  • [6] An effective CNN and Transformer complementary network for medical image segmentation
    Yuan, Feiniu
    Zhang, Zhengxiao
    Fang, Zhijun
    PATTERN RECOGNITION, 2023, 136
  • [7] TT-Net: Tensorized Transformer Network for 3D medical image segmentation
    Wang, Jing
    Qu, Aixi
    Wang, Qing
    Zhao, Qibin
    Liu, Ju
    Wu, Qiang
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2023, 107
  • [8] TFCNs: A CNN-Transformer Hybrid Network for Medical Image Segmentation
    Li, Zihan
    Li, Dihan
    Xu, Cangbai
    Wang, Weice
    Hong, Qingqi
    Li, Qingde
    Tian, Jie
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2022, PT IV, 2022, 13532 : 781 - 792
  • [9] 3D Medical image segmentation using parallel transformers
    Yan, Qingsen
    Liu, Shengqiang
    Xu, Songhua
    Dong, Caixia
    Li, Zongfang
    Shi, Javen Qinfeng
    Zhang, Yanning
    Dai, Duwei
    PATTERN RECOGNITION, 2023, 138
  • [10] nnFormer: Volumetric Medical Image Segmentation via a 3D Transformer
    Zhou, Hong-Yu
    Guo, Jiansen
    Zhang, Yinghao
    Han, Xiaoguang
    Yu, Lequan
    Wang, Liansheng
    Yu, Yizhou
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 4036 - 4045