A critical transition of two-dimensional flow in toroidal geometry

被引:0
|
作者
Agoua, Wesley [1 ]
Favier, Benjamin [2 ]
Morales, Jorge [3 ]
Bos, Wouter J. T. [1 ]
机构
[1] Univ Lyon 1 Claude Bernard, INSA Lyon, UMR5509, Lab Mecan Fluides & Acoust,CNRS,Ecole Cent Lyon, F-69134 Ecully, France
[2] Aix Marseille Univ, IRPHE, Cent Marseille, CNRS, F-13453 Marseille, France
[3] CEA, IRFM, F-13108 St Paul Les Durance, France
关键词
plasmas; turbulent mixing; turbulent transition; POLOIDAL ROTATION; TURBULENCE; TRANSPORT; SUPPRESSION; TOKAMAKS; CASCADE; CHANNEL; CODE;
D O I
10.1017/jfm.2024.425
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We investigate two-dimensional (2-D) axisymmetric flow in toroidal geometry, with a focus on a transition between 2-D three-component flow and 2-D two-component flow. This latter flow state allows a self-organization of the system to a quiescent dynamics, characterized by long-living coherent structures. When these large-scale structures orient in the azimuthal direction, the radial transport is reduced. Such a transition, if it can be triggered in toroidally confined fusion plasmas, is beneficial for the generation of zonal flows and should consequently result in a flow field beneficial for confinement.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] The transition of flow patterns, through critical stagnation points in two-dimensional groundwater flow
    Jin, Wei
    Steward, David R.
    [J]. ADVANCES IN WATER RESOURCES, 2007, 30 (01) : 16 - 28
  • [2] ELONGATIONAL FLOW IN A TWO-DIMENSIONAL CHANNEL GEOMETRY
    KHOMAMI, B
    MCHUGH, AJ
    [J]. JOURNAL OF APPLIED POLYMER SCIENCE, 1987, 33 (05) : 1495 - 1509
  • [3] Critical behavior in the inverse to forward energy transition in two-dimensional magnetohydrodynamic flow
    Seshasayanan, Kannabiran
    Alexakis, Alexandros
    [J]. PHYSICAL REVIEW E, 2016, 93 (01)
  • [4] The critical phenomena of the dilute-to-dense transition in two-dimensional granular flow
    Zhong Jie
    Peng Zheng
    Wu Yao-Yu
    Shi Qing-Fan
    Lu Kun-Quan
    Hou Mei-Ying
    [J]. ACTA PHYSICA SINICA, 2006, 55 (12) : 6691 - 6696
  • [5] Critical geometry of two-dimensional passive scaler turbulence
    Kondev, J
    Huber, G
    [J]. PHYSICAL REVIEW LETTERS, 2001, 86 (26) : 5890 - 5893
  • [6] ELONGATIONAL FLOW IN A TWO-DIMENSIONAL CHANNEL GEOMETRY.
    Khomami, B.
    McHugh, A.J.
    [J]. Journal of Applied Polymer Science, 1987, 33 (05): : 1495 - 1509
  • [7] Scale-Dependent Statistical Geometry in Two-Dimensional Flow
    Merrifield, Sophia T.
    Kelley, Douglas H.
    Ouellette, Nicholas T.
    [J]. PHYSICAL REVIEW LETTERS, 2010, 104 (25)
  • [8] Transition to chaos in a confined two-dimensional fluid flow
    Molenaar, D
    Clercx, HJH
    van Heijst, GJF
    [J]. PHYSICAL REVIEW LETTERS, 2005, 95 (10)
  • [9] Jamming transition in a two-dimensional traffic flow model
    Nagatani, T
    [J]. PHYSICAL REVIEW E, 1999, 59 (05) : 4857 - 4864
  • [10] TWO-DIMENSIONAL QUANTUM GEOMETRY
    Ambjorn, J.
    Budd, T.
    [J]. ACTA PHYSICA POLONICA B, 2013, 44 (12): : 2537 - 2557