Degenerate subspace localization and local symmetries

被引:0
|
作者
Schmelcher, Peter [1 ,2 ]
机构
[1] Univ Hamburg, Zentrum Opt Quantentechnol, Fachbereich Phys, Luruper Chaussee 149, D-22761 Hamburg, Germany
[2] Univ Hamburg, Hamburg Ctr Ultrafast Imaging, Luruper Chaussee 149, D-22761 Hamburg, Germany
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 02期
关键词
EIGENVALUES; PHASE;
D O I
10.1103/PhysRevResearch.6.023188
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Domain specific localization of eigenstates has been a persistent observation for systems with local symmetries. The underlying mechanism for this localization behavior has, however, remained elusive. We provide here an analysis of a local reflection symmetric tight-binding Hamiltonian which attempts at identifying the key features that lead to the localized eigenstates. A weak coupling expansion of closed-form expressions for the eigenvectors demonstrates that the degeneracy of on-site energies occurring at the center of the locally symmetric domains represents the nucleus for eigenstates spreading across the domain. Since the symmetry-related subdomains constituting a locally symmetric domain are isospectral, we encounter pairwise degenerate eigenvalues that split linearly with an increasing coupling strength of the subdomains. The coupling to the (nonsymmetric) environment in an extended setup then leads to the survival of a certain system specific fraction of linearly splitting eigenvalues. The latter go hand in hand with the eigenstate localization on the locally symmetric domain. We provide a brief outlook addressing possible generalizations of local symmetry transformations while maintaining isospectrality.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Object localization by subspace clustering of local descriptors
    Bouveyron, C.
    Kannala, J.
    Schmid, C.
    Girard, S.
    COMPUTER VISION, GRAPHICS AND IMAGE PROCESSING, PROCEEDINGS, 2006, 4338 : 457 - +
  • [2] Shape Analysis with Subspace Symmetries
    Berner, Alexander
    Wand, Michael
    Mitra, Niloy J.
    Mewes, Daniel
    Seidel, Hans-Peter
    COMPUTER GRAPHICS FORUM, 2011, 30 (02) : 277 - 286
  • [3] Localization and symmetries
    Morchio, G.
    Strocchi, F.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (12) : 3173 - 3187
  • [4] Bifurcations, symmetries and the notion of fixed subspace
    Cicogna, Giampaolo
    REVIEWS IN MATHEMATICAL PHYSICS, 2021, 33 (09)
  • [5] Degenerate eigenvalues for Hamiltonians with no obvious symmetries
    Gubser, Steven S.
    Bradley, Robert K.
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2005, 9 (04) : 593 - 602
  • [6] Enhancing Disorder-Free Localization through Dynamically Emergent Local Symmetries
    Halimeh, Jad C.
    Homeier, Lukas
    Zhao, Hongzheng
    Bohrdt, Annabelle
    Grusdt, Fabian
    Hauke, Philipp
    Knolle, Johannes
    PRX QUANTUM, 2022, 3 (02):
  • [7] Global Symmetries, Local Symmetries and Groupoids
    Petitjean, Michel
    SYMMETRY-BASEL, 2021, 13 (10):
  • [8] Application of degenerate perturbation theory to subspace tracking
    Oates, JH
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2000, 48 (01) : 92 - 101
  • [9] Noether Symmetries of the Triple Degenerate DNLS Equations
    Camci, Ugur
    MATHEMATICAL AND COMPUTATIONAL APPLICATIONS, 2024, 29 (04)
  • [10] HIERARCHICAL LOCAL SYMMETRIES
    CHO, KG
    DUNN, SM
    PATTERN RECOGNITION LETTERS, 1991, 12 (06) : 343 - 347