Towards ion stopping power experiments with the laser-driven LIGHT beamline

被引:0
|
作者
Nazary, H. [1 ]
Metternich, M. [2 ]
Schumacher, D. [2 ]
Neufeld, F. [1 ]
Grimm, S. J. [1 ]
Brabetz, C. [2 ]
Kroll, F. [3 ,4 ]
Brack, F. -E. [3 ,4 ]
Blazevic, A. [2 ,5 ]
Schramm, U. [3 ,4 ]
Bagnoud, V. [1 ,2 ,5 ]
Roth, M. [1 ]
机构
[1] Tech Univ Darmstadt, Inst Kernphys, Schlossgartenstr 9, D-64289 Darmstadt, Germany
[2] GSI Helmholtzzentrum Schwerionenforsch GmbH, Planckstr 1, D-64291 Darmstadt, Germany
[3] Helmholtz Zentrum Dresden Rossendorf, D-01328 Dresden, Germany
[4] TUD Dresden Univ Technol, D-01062 Dresden, Germany
[5] Helmholtz Inst Jena, Jena, Germany
关键词
intense particle beams; plasma applications; ENERGY-LOSS; HEAVY-IONS; KINETIC-EQUATION; PLASMA;
D O I
10.1017/S0022377824000576
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The main emphasis of the Laser Ion Generation, Handling and Transport (LIGHT) beamline at GSI Helmholtzzentrum f & uuml;r Schwerionenforschung GmbH are phase-space manipulations of laser-generated ion beams. In recent years, the LIGHT collaboration has successfully generated and focused intense proton bunches with an energy of 8 MeV and a temporal duration shorter than 1 ns (FWHM). An interesting area of application that exploits the short ion bunch properties of LIGHT is the study of ion-stopping power in plasmas, a key process in inertial confinement fusion for understanding energy deposition in dense plasmas. The most challenging regime is found when the projectile velocity closely approaches the thermal plasma electron velocity ($v_{i}\approx v_{e,\text {th}}$), for which existing theories show high discrepancies. Since conclusive experimental data are scarce in this regime, we plan to conduct experiments on laser-generated plasma probed with ions generated with LIGHT at a higher temporal resolution than previously achievable. The high temporal resolution is important because the parameters of laser-generated plasmas are changing on the nanosecond time scale. To meet this goal, our recent studies have dealt with ions of lower kinetic energies. In 2021, laser accelerated carbon ions were transported with two solenoids and focused temporally with LIGHT's radio frequency cavity. A bunch length of 1.2 ns (FWHM) at an energy of 0.6 MeV u$<^>{-1}$ was achieved. In 2022, protons with an energy of 0.6 MeV were transported and temporally compressed to a bunch length of 0.8 ns. The proton beam was used to measure the energy loss in a cold foil. Both the ion and proton beams will also be employed for energy loss measurements in a plasma target.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] The ELIMED transport and dosimetry beamline for laser-driven ion beams
    Romano, F.
    Schillaci, F.
    Cirrone, G. A. P.
    Cuttone, G.
    Scuderi, V.
    Allegra, L.
    Amato, A.
    Amico, A.
    Candiano, G.
    De Luca, G.
    Gallo, G.
    Giordanengo, S.
    Guarachi, L. Fanola
    Korn, G.
    Larosa, G.
    Leanza, R.
    Manna, R.
    Marchese, V.
    Marchetto, F.
    Margarone, D.
    Milluzzo, G.
    Petringa, G.
    Pipek, J.
    Pulvirenti, S.
    Rizzo, D.
    Sacchi, R.
    Salamone, S.
    Sedita, M.
    Vignati, A.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2016, 829 : 153 - 158
  • [2] Generation and stopping of laser-driven two-component ion beam
    Deng, H. X.
    Shao, F. Q.
    Zou, D. B.
    Jiang, X. R.
    Wang, W. Q.
    Zhao, N.
    Hu, L. X.
    Zhang, G. B.
    Yang, X. H.
    Yu, J. Q.
    Yu, T. P.
    PHYSICS OF PLASMAS, 2021, 28 (09)
  • [3] Scintillators in High-Power Laser-Driven Experiments
    Tarisien, M.
    Henares, J. L.
    Baccou, C.
    Bonnet, T.
    Boulay, F.
    Gobet, F.
    Gugiu, M.
    Hannachi, F.
    Kisyov, S.
    Manailescu, C.
    Meot, V.
    Negoita, F.
    Raymond, X.
    Revet, G.
    Tudor, Lucian
    Versteegen, M.
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2018, 65 (08) : 2216 - 2219
  • [4] The impact of contaminants on laser-driven light ion acceleration
    Petrov, G. M.
    Willingale, L.
    Davis, J.
    Petrova, Tz.
    Maksimchuk, A.
    Krushelnick, K.
    PHYSICS OF PLASMAS, 2010, 17 (10)
  • [5] The Laser-Driven Ion Acceleration Beamline on ALLS 200 TW for Testing Nanowire Targets
    Vallieres, Simon
    Puyuelo-Valdes, Pilar
    Salvadori, Martina
    Bienvenue, Charles
    Payeur, Stephane
    d'Humieres, Emmanuel
    Antici, Patrizio
    LASER ACCELERATION OF ELECTRONS, PROTONS, AND IONS V, 2019, 11037
  • [6] Design and optimization of a compact laser-driven proton beamline
    M. Scisciò
    M. Migliorati
    L. Palumbo
    P. Antici
    Scientific Reports, 8
  • [7] Design and optimization of a compact laser-driven proton beamline
    Sciscio, M.
    Migliorati, M.
    Palumbo, L.
    Antici, P.
    SCIENTIFIC REPORTS, 2018, 8
  • [8] Progress in Laser-Driven Ion Acceleration towards Applications in Radiotherapy
    McKenna, P.
    Borghesi, M.
    Neely, D.
    Najmudin, Z.
    Zepf, M.
    Prise, K.
    2014 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2014,
  • [9] Stable high repetition-rate laser-driven proton beam production for multidisciplinary applications on the advanced laser light source ion beamline
    Catrix, Elias
    Boivin, Frederic
    Langlois, Kassandra
    Vallieres, Simon
    Boynukara, Canan Yagmur
    Fourmaux, Sylvain
    Antici, Patrizio
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2023, 94 (10):
  • [10] The integrated laser-driven ion accelerator system and the laser-driven ion beam radiotherapy challenge
    Bolton, Paul R.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2016, 809 : 149 - 155