Weakly supervised semantic segmentation via saliency perception with uncertainty-guided noise suppression

被引:0
|
作者
Liu, Xinyi [1 ]
Huang, Guoheng [1 ]
Yuan, Xiaochen [2 ]
Zheng, Zewen [1 ]
Zhong, Guo [3 ]
Chen, Xuhang [4 ]
Pun, Chi-Man [5 ]
机构
[1] Guangdong Univ Technol, Guangzhou, Peoples R China
[2] Macao Polytech Univ, Macau, Peoples R China
[3] Guangdong Univ Foreign Studies, Guangzhou, Peoples R China
[4] Huizhou Univ, Huizhou, Peoples R China
[5] Univ Macau, Macau, Peoples R China
来源
关键词
Weakly Supervised Semantic Segmentation; Class Activation Mapping; Uncertainty estimation; Attention mechanism;
D O I
10.1007/s00371-024-03574-1
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Weakly Supervised Semantic Segmentation (WSSS) has become increasingly popular for achieving remarkable segmentation with only image-level labels. Current WSSS approaches extract Class Activation Mapping (CAM) from classification models to produce pseudo-masks for segmentation supervision. However, due to the gap between image-level supervised classification loss and pixel-level CAM generation tasks, the model tends to activate discriminative regions at the image level rather than pursuing pixel-level classification results. Moreover, insufficient supervision leads to unrestricted attention diffusion in the model, further introducing inter-class recognition noise. In this paper, we introduce a framework that employs Saliency Perception and Uncertainty, which includes a Saliency Perception Module (SPM) with Pixel-wise Transfer Loss (SP-PT), and an Uncertainty-guided Noise Suppression method. Specifically, within the SPM, we employ a hybrid attention mechanism to expand the receptive field of the module and enhance its ability to perceive salient object features. Meanwhile, a Pixel-wise Transfer Loss is designed to guide the attention diffusion of the classification model to non-discriminative regions at the pixel-level, thereby mitigating the bias of the model. To further enhance the robustness of CAM for obtaining more accurate pseudo-masks, we propose a noise suppression method based on uncertainty estimation, which applies a confidence matrix to the loss function to suppress the propagation of erroneous information and correct it, thus making the model more robust to noise. We conducted experiments on the PASCAL VOC 2012 and MS COCO 2014, and the experimental results demonstrate the effectiveness of our proposed framework. Code is available at https://github.com/pur-suit/SPU.
引用
收藏
页码:2891 / 2906
页数:16
相关论文
共 50 条
  • [1] Uncertainty-Guided Contrastive Learning for Weakly Supervised Point Cloud Segmentation
    Yao, Baochen
    Dong, Li
    Qiu, Xiaojie
    Song, Kangkang
    Yan, Diqun
    Peng, Chengbin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [2] Saliency Guidance and Expansion Suppression on PuzzleCAM for Weakly Supervised Semantic Segmentation
    Chang, Rong-Hsuan
    Guo, Jing-Ming
    Seshathiri, Sankarasrinivasan
    ELECTRONICS, 2022, 11 (24)
  • [3] Saliency Background Guided Network for Weakly-Supervised Semantic Segmentation
    Bai X.
    Li W.
    Wang W.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2021, 34 (09): : 824 - 835
  • [4] Semi-supervised Semantic Segmentation with Uncertainty-Guided Self Cross Supervision
    Zhang, Yunyang
    Gong, Zhiqiang
    Zhao, Xiaoyu
    Zheng, Xiaohu
    Yao, Wen
    COMPUTER VISION - ACCV 2022, PT VII, 2023, 13847 : 327 - 343
  • [5] Semi-supervised image semantic segmentation method with semantic regions patching and uncertainty-guided loss
    Guo, Dinghao
    Chen, Dali
    Lin, Xin
    Xue, Zheng
    Zheng, Wei
    Li, Xianling
    Visual Computer, 2025, 41 (05): : 3611 - 3626
  • [6] Saliency Guided Self-Attention Network for Weakly and Semi-Supervised Semantic Segmentation
    Yao, Qi
    Gong, Xiaojin
    IEEE ACCESS, 2020, 8 : 14413 - 14423
  • [7] Joint Learning of Saliency Detection and Weakly Supervised Semantic Segmentation
    Zeng, Yu
    Zhuge, Yunzhi
    Lu, Huchuan
    Zhang, Lihe
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 7222 - 7232
  • [8] Weakly Supervised Semantic Segmentation Based on Semantic Texton Forest and Saliency Prior
    Han Zheng
    Xiao Zhitao
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2018, 40 (03) : 610 - 617
  • [9] Superpixel Guided Network for Weakly Supervised Semantic Segmentation
    Xie Z.
    Jiang W.
    Yang Y.
    Lu H.
    IEEE Signal Processing Letters, 2024, 31 : 1 - 5
  • [10] Saliency Guided Inter- and Intra-Class Relation Constraints for Weakly Supervised Semantic Segmentation
    Chen, Tao
    Yao, Yazhou
    Zhang, Lei
    Wang, Qiong
    Xie, Guo-Sen
    Shen, Fumin
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 1727 - 1737