Dichroic switching of core-shell plasmonic nanoparticles on reflective surfaces

被引:2
|
作者
Liang, Tian [1 ,2 ]
Li, Zhiwei [2 ]
Bai, Yaocai [2 ]
Yin, Yadong [2 ]
机构
[1] Hubei Univ Sci & Technol, Sch Nucl Technol & Chem & Biol, Hubei Key Lab Radiat Chem & Funct Mat, Xianning, Peoples R China
[2] Univ Calif Riverside, Dept Chem, Riverside, CA 92521 USA
来源
EXPLORATION | 2024年 / 4卷 / 03期
基金
美国国家科学基金会;
关键词
absorbance; dichroic property; localized surface plasmon resonance; plasmonics; reflection; scattering; transmittance; LYCURGUS CUP; NANOSTRUCTURES; COLOR; GOLD;
D O I
10.1002/EXP.20210234
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Plasmonic metal nanostructures can simultaneously scatter and absorb light, with resonance wavelength and strength depending on their morphology and composition. This work demonstrates that unique dichroic effects and high-contrast colour-switching can be achieved by leveraging the resonant scattering and absorption of light by plasmonic nanostructures and the specular reflection of the resulting transmitted light. Using core/shell nanostructures comprising a metal core and a dielectric shell, we show that their spray coating on reflective substrates produces dichroic films that can display colour switching at different viewing angles. The high-contrast colour switching, high flexibility in designing multicolour patterns, and convenience for large-scale production promise their wide range of applications, including anticounterfeiting, mechanochromic sensing, colour display, and printing. Spray coating of the obtained core/shell nanostructures (a metal core and a dielectric shell) on reflective substrates produces dichroic films that can display colour switching at different viewing angles. The unique dichroic effect and high-contrast colour-switching are achieved by leveraging the resonant scattering and absorption of light by plasmonic nanostructures and the specular reflection of the resulting transmitted light. image
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Temperature-controlled switching of plasmonic response in gallium core-shell nanoparticles
    Roy, Prithu
    Bolshakov, Alexey D.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2020, 53 (46)
  • [2] Magnetic-Plasmonic Core-Shell Nanoparticles
    Levin, Carly S.
    Hofmann, Cristina
    Ali, Tamer A.
    Kelly, Anna T.
    Morosan, Emilia
    Nordlander, Peter
    Whitmire, Kenton H.
    Halas, Naomi J.
    ACS NANO, 2009, 3 (06) : 1379 - 1388
  • [3] Plasmonic enhancement using core-shell nanoparticles
    Stranik, O
    Nooney, R
    McDonagh, C
    MacCraith, BD
    Opto-Ireland 2005: Nanotechnology and Nanophotonics, 2005, 5824 : 79 - 85
  • [4] Resistive Switching in Single Core-Shell Nanoparticles
    Speckbacher, M.
    Ji, X.
    Tornow, M.
    2019 IEEE 19TH INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO 2019), 2019, : 512 - 516
  • [5] Photothermal Enhancement in Core-Shell Structured Plasmonic Nanoparticles
    Li, Qiang
    Zhang, Weichun
    Zhao, Ding
    Qiu, Min
    PLASMONICS, 2014, 9 (03) : 623 - 630
  • [6] Photothermal Enhancement in Core-Shell Structured Plasmonic Nanoparticles
    Qiang Li
    Weichun Zhang
    Ding Zhao
    Min Qiu
    Plasmonics, 2014, 9 : 623 - 630
  • [7] Negative asymmetry parameter in plasmonic core-shell nanoparticles
    Varytis, Paris
    Busch, Kurt
    OPTICS EXPRESS, 2020, 28 (02): : 1714 - 1721
  • [8] Shell thickness dependent plasmonic resonances in concentric core-shell nanoparticles
    Xu, Yunfeng
    Zhang, Kuixing
    Wei, Benzheng
    TENTH INTERNATIONAL CONFERENCE ON INFORMATION OPTICS AND PHOTONICS, 2018, 10964
  • [9] Tunable multiband metasurfaces based on plasmonic core-shell nanoparticles
    Farazi, Soheil
    Namin, Farhad A.
    Werner, Douglas H.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2018, 35 (04) : 658 - 666
  • [10] Superscattering of Light from Core-Shell Nonlocal Plasmonic Nanoparticles
    Huang, Y.
    Gao, L.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (51): : 30170 - 30178