A multi-energy load forecasting method based on complementary ensemble empirical model decomposition and composite evaluation factor reconstruction

被引:10
|
作者
Li, Kang [1 ]
Duan, Pengfei [1 ]
Cao, Xiaodong [2 ,3 ]
Cheng, Yuanda [1 ]
Zhao, Bingxu [2 ,3 ]
Xue, Qingwen [1 ]
Feng, Mengdan [1 ]
机构
[1] Taiyuan Univ Technol, Coll Civil Engn, Taiyuan 030024, Peoples R China
[2] Beihang Univ, Sch Aeronaut Sci & Engn, Beijing 100191, Peoples R China
[3] Tianmushan Lab, Hangzhou 311115, Peoples R China
关键词
Integrated energy systems; Multi-energy load forecasting; Multi-task learning; Attention mechanism; Composite evaluation factor;
D O I
10.1016/j.apenergy.2024.123283
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Ensuring precise multi-energy load forecasting is crucial for the effective planning, management, and operation of Integrated Energy Systems (IES). This study proposes a novel multivariate load forecasting model based on time-series decomposition and reconstruction to handle the complex, high-dimensional multi-energy load data in IES and enhance forecasting accuracy. Initially, the model conducts a thorough correlation analysis and variable screening to minimize irrelevant data interference. It then applies denoising by decomposing the load sequence into modal components with distinct characteristics, using the complementary ensemble empirical mode decomposition (CEEMD). To overcome the unstable prediction accuracy inherent in time-domain decomposition methods, this study introduces an innovative composite evaluation factor (CEF) that reconstructs the modal components after considering their complexity, coupling, and frequency. The final predictions are generated using the proposed MTL-CNN-BiLSTM model, optimized with the attention mechanism. The results show that the proposed model significantly reduces error accumulation compared to traditional time-domain analysis methods, achieving a 37.40% reduction in average forecasting error and a 30.73% increase in forecasting efficiency.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Load forecasting for regional integrated energy system based on complementary ensemble empirical mode decomposition and multi-model fusion
    Shi, Jian
    Teh, Jiashen
    APPLIED ENERGY, 2024, 353 (353)
  • [2] Power Load Demand Forecasting Model and Method Based on Multi-Energy Coupling
    Liu, Dunnan
    Wang, Lingxiang
    Qin, Guangyu
    Liu, Mingguang
    APPLIED SCIENCES-BASEL, 2020, 10 (02):
  • [3] A multi-task learning method for multi-energy load forecasting based on synthesis correlation analysis and load participation factor
    Tan, Mao
    Liao, Chengchen
    Chen, Jie
    Cao, Yijia
    Wang, Rui
    Su, Yongxin
    APPLIED ENERGY, 2023, 343
  • [4] Complementary Ensemble Empirical Mode Decomposition Based Microwave Induced Thermoacoustic Image Reconstruction Method
    Shang, Xin
    Liu, Shuangli
    Wan, Weijia
    Liu, Lei
    2022 IEEE MTT-S INTERNATIONAL MICROWAVE BIOMEDICAL CONFERENCE (IMBIOC), 2022, : 229 - 231
  • [5] Enhanced load forecasting for distributed multi-energy system: A stacking ensemble learning method with deep reinforcement learning and model fusion
    Ren, Xiaoxiao
    Tian, Xin
    Wang, Kai
    Yang, Sifan
    Chen, Weixiong
    Wang, Jinshi
    ENERGY, 2025, 319
  • [6] Optimal Bagging Ensemble Ultra Short Term Multi-energy Load Forecasting Considering Least Average Envelope Entropy Load Decomposition
    Jiang F.
    Lin Z.
    Wang W.
    Wang X.
    Xi Z.
    Guo Q.
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2024, 44 (05): : 1777 - 1788
  • [7] Multi-energy Storage Evolution Model of Regional Integrated Energy System Based on Load Forecasting
    Zhang, Pengfei
    Zong, Xingchen
    Cao, Yingshuang
    Zhao, Yuheng
    2022 IEEE/IAS INDUSTRIAL AND COMMERCIAL POWER SYSTEM ASIA (I&CPS ASIA 2022), 2022, : 725 - 731
  • [8] Multi-energy load forecasting for integrated energy system based on sequence decomposition fusion and factors correlation analysis
    Peng, Daogang
    Liu, Yu
    Wang, Danhao
    Zhao, Huirong
    Qu, Bogang
    ENERGY, 2024, 308
  • [9] A novel data-driven multi-energy load forecasting model
    Yao, Yong
    Li, Shizhu
    Wu, Zhichao
    Yu, Chi
    Liu, Xinglei
    Yuan, Keyu
    Liu, JiaCheng
    Wu, Zeyang
    Liu, Jun
    Frontiers in Energy Research, 2022, 10
  • [10] A novel data-driven multi-energy load forecasting model
    Yao, Yong
    Li, Shizhu
    Wu, Zhichao
    Yu, Chi
    Liu, Xinglei
    Yuan, Keyu
    Liu, JiaCheng
    Wu, Zeyang
    Liu, Jun
    FRONTIERS IN ENERGY RESEARCH, 2022, 10