High-dimensional Asymptotics of Denoising Autoencoders

被引:0
|
作者
Cui, Hugo [1 ]
Zdeborova, Lenka [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Dept Phys, Stat Phys Computat Lab, Lausanne, Switzerland
关键词
NETWORK;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We address the problem of denoising data from a Gaussian mixture using a two-layer non-linear autoencoder with tied weights and a skip connection. We consider the high-dimensional limit where the number of training samples and the input dimension jointly tend to infinity while the number of hidden units remains bounded. We provide closed-form expressions for the denoising mean-squared test error. Building on this result, we quantitatively characterize the advantage of the considered architecture over the autoencoder without the skip connection that relates closely to principal component analysis. We further show that our results accurately capture the learning curves on a range of real data sets.
引用
收藏
页数:41
相关论文
共 50 条
  • [1] Random Graph Asymptotics on High-Dimensional Tori
    Markus Heydenreich
    Remco van der Hofstad
    Communications in Mathematical Physics, 2007, 270 : 335 - 358
  • [2] Random graph asymptotics on high-dimensional tori
    Heydenreich, Markus
    van der Hofstad, Remco
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 270 (02) : 335 - 358
  • [3] Copulas as High-Dimensional Generative Models: Vine Copula Autoencoders
    Tagasovska, Natasa
    Ackerer, Damien
    Vatter, Thibault
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [4] Autoencoders for Compressive Sampling in a High-Dimensional Ultrafast Optical System
    Hary, M.
    Skalli, A.
    Dudley, J. M.
    Brunner, D.
    Genty, G.
    AI AND OPTICAL DATA SCIENCES V, 2024, 12903
  • [5] HIGH-DIMENSIONAL ASYMPTOTICS OF PREDICTION: RIDGE REGRESSION AND CLASSIFICATION
    Dobriban, Edgar
    Wager, Stefan
    ANNALS OF STATISTICS, 2018, 46 (01): : 247 - 279
  • [6] Neighborhood Denoising for Learning High-dimensional Grasping Manifolds
    Tsoli, Aggeliki
    Jenkins, Odest Chadwicke
    2008 IEEE/RSJ INTERNATIONAL CONFERENCE ON ROBOTS AND INTELLIGENT SYSTEMS, VOLS 1-3, CONFERENCE PROCEEDINGS, 2008, : 3680 - 3685
  • [7] Feature selection using autoencoders with Bayesian methods to high-dimensional data
    Shu, Lei
    Huang, Kun
    Jiang, Wenhao
    Wu, Wenming
    Liu, Hongling
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 41 (06) : 7397 - 7406
  • [8] Distance assessment and analysis of high-dimensional samples using variational autoencoders
    Inacio, Marco
    Izbicki, Rafael
    Gyires-Toth, Balint
    INFORMATION SCIENCES, 2021, 557 (557) : 407 - 420
  • [9] Poisson asymptotics for random projections of points on a high-dimensional sphere
    Itai Benjamini
    Oded Schramm
    Sasha Sodin
    Israel Journal of Mathematics, 2011, 181 : 381 - 386
  • [10] High-dimensional asymptotics of Langevin dynamics in spiked matrix models
    Liang, Tengyuan
    Sen, Subhabrata
    Sur, Pragya
    INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2023, 12 (04) : 2720 - 2752