One-step synthesis of Cu-doped Pb10(PO4)6Cl2 apatite: a wide-gap semiconductor

被引:0
|
作者
Yang, Wuzhang [1 ,2 ,3 ]
Pang, Zhihong [1 ]
Ren, Zhi [1 ,2 ]
机构
[1] Westlake Univ, Sch Sci, Dept Phys, 18 Shilongshan Rd, Hangzhou 310024, Zhejiang, Peoples R China
[2] Westlake Inst Adv Study, Inst Nat Sci, 18 Shilongshan Rd, Hangzhou 310024, Zhejiang, Peoples R China
[3] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China
来源
INORGANIC CHEMISTRY FRONTIERS | 2024年 / 11卷 / 18期
关键词
CRYSTAL-STRUCTURE; IONS;
D O I
10.1039/d4qi01140f
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
The recent claim of potential room-temperature superconductivity in Pb10-xCux(PO4)(6)O has attracted widespread attention. However, the signature of superconductivity is later attributed to the Cu2S impurity formed during the multiple-step synthesis procedure. Here we report a simple one-step approach for synthesizing single-phase chloride analogue Cu-doped Pb-10(PO4)(6)Cl-2 using PbO, PbCl2, CuCl2, and NH4H2PO4 as starting materials. Irrespective of the initial stoichiometry, Cu doping always leads to a lattice expansion in Pb-10(PO4)(6)Cl-2. This indicates that Cu prefers to reside in the hexagonal channels rather than as substitutes at the Pb sites, and the chemical formula is expressed as Pb-10(PO4)(6)CuxCl2. All the Pb-10(PO4)(6)CuxCl2 (0 <= x <= 1.0) samples are found to be semiconductors with wide band gaps of 4.46-4.59 eV, and the Cu-doped ones (x = 0.5 and 1.0) exhibit a paramagnetic behavior without any phase transition between 400 and 1.8 K. Our study calls for a reinvestigation of the Cu location in Pb10-xCux(PO4)(6)O and supports the absence of superconductivity in this oxyapatite.
引用
收藏
页码:5858 / 5865
页数:9
相关论文
共 50 条
  • [1] Phase diagram of apatite system Ca10(PO4)6Cl2-Pb10(PO4)6Cl2
    Knyazev, A. V.
    Chernorukov, N. G.
    Bulanov, E. N.
    THERMOCHIMICA ACTA, 2011, 526 (1-2) : 72 - 77
  • [2] Synchrotron-based X-ray diffraction of the lead apatite series Pb10(PO4)6Cl2-Pb10(AsO4)6Cl2
    Flis, Justyna
    Borkiewicz, Olaf
    Bajda, Tomasz
    Manecki, Maciej
    Klasa, Jolanta
    JOURNAL OF SYNCHROTRON RADIATION, 2010, 17 : 207 - 214
  • [3] Thermodynamic functions of Ba10(PO4)6Cl2, Sr10(PO4)6Cl2 and Ca10(PO4)6Cl2
    Babu, R.
    Jena, Hrudananda
    Kutty, K. V. Govindan
    Nagarajan, K.
    THERMOCHIMICA ACTA, 2011, 526 (1-2) : 78 - 82
  • [4] Synthesis, transport and magnetic properties of Cu-doped apatite Pb10_XCuX(PO4)6O
    Hou, Qiang
    Wei, Wei
    Zhou, Xin
    Wang, Xinyue
    Wang, Tony
    Sun, Yue
    Shi, Zhixiang
    MATTER, 2023, 6 (12) : 4408 - 4418
  • [5] Heat capacity of Sr10(PO4)6Cl2 and Ca10(PO4)6Cl2 by DSC
    Krishnan, R. Venkata
    Jena, Hrudananda
    Kutty, K. V. Govindan
    Nagarajan, K.
    THERMOCHIMICA ACTA, 2008, 478 (1-2) : 13 - 16
  • [6] Electromagnetic properties of copper doped lead apatite Pb10−xCux(PO4)6O
    M. Singh
    P. Saha
    K. Kumar
    D. Takhar
    B. Birajdar
    V. P. S. Awana
    S. Patnaik
    Journal of Materials Science, 2024, 59 : 1464 - 1471
  • [7] Thermal Behavior of Pyromorphite (Pb10(PO4)6Cl2): In Situ High Temperature Powder X-ray Diffraction Study
    Gu, Tingting
    Qin, Shan
    Wu, Xiang
    CRYSTALS, 2020, 10 (12): : 1 - 8
  • [8] LEAD BROMAPATITE, PB10(PO4)6BR2
    BHATNAGAR, VM
    INORGANIC & NUCLEAR CHEMISTRY LETTERS, 1971, 7 (03): : 231 - +
  • [9] LEAD FLUORAPATITE, PB10(PO4)6F2
    BHATNAGAR, VM
    MATERIALS RESEARCH BULLETIN, 1971, 6 (01) : 1 - +
  • [10] LEAD FLUORAPATITE, PB10 (PO4)6 F2
    BHATNAGA.VM
    CURRENT SCIENCE, 1970, 39 (06): : 132 - &