Intrarenal pH-Responsive Self-Assembly of Luminescent Gold Nanoparticles for Diagnosis of Early Kidney Injury

被引:1
|
作者
Zhao, Zhipeng [1 ]
He, Kui [1 ]
Liu, Ben [1 ]
Nie, Wenyan [1 ]
Luo, Xiaoxi [1 ]
Liu, Jinbin [1 ]
机构
[1] South China Univ Technol, Sch Chem & Chem Engn, State Key Lab Pulp & Paper Engn, Guangzhou 510640, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
luminescence; gold nanoparticle; self-assembly; imaging; kidney injury; METABOLIC-ACIDOSIS; MECHANISMS;
D O I
10.1002/anie.202406016
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Metabolic acidosis-induced kidney injury (MAKI) is asymptomatic and lack of clinical biomarkers in early stage, but rapidly progresses to severe renal fibrosis and ultimately results in end-stage kidney failure. Therefore, developing rapid and noninvasive strategies direct responsive to renal tubular acidic microenvironment rather than delayed biomarkers are essential for timely renoprotective interventions. Herein, we develop pH-responsive luminescent gold nanoparticles (p-AuNPs) in the second near-infrared emission co-coated with 2,3-dimethylaleic anhydride conjugated beta-mercaptoethylamine and cationic 2-diethylaminoethanethiol hydrochloride, which showed sensitive pH-induced charge reversal and intrarenal self-assembly for highly sensitive and long-time (similar to 24 h) imaging of different stages of MAKI. By integrating advantages of pH-induced intrarenal self-assembly and enhanced interactions between pH-triggered positively charged p-AuNPs and renal tubular cells, the early- and late-stage MAKI could be differentiated rapidly within 10 min post-injection (p.i.) with contrast index (CI) of 3.5 and 4.3, respectively. The corresponding maximum CI could reach 5.1 and 9.2 at 12 h p.i., respectively. Furthermore, p-AuNPs were demonstrated to effectively real-time monitor progressive recovery of kidney injury in MAKI mice after therapy, and also exhibit outstanding capabilities for drug screening. This pH-responsive strategy showed great promise for feedback on kidney dysfunction progression, opening new possibilities for early-stage diagnosis of pH-related diseases.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] pH-Responsive reversible self-assembly of gold nanoparticles into nanovesicles
    Fan, Chunfang
    Bian, Tong
    Shang, Lu
    Shi, Run
    Wu, Li-Zhu
    Tung, Chen-Ho
    Zhang, Tierui
    [J]. NANOSCALE, 2016, 8 (07) : 3923 - 3925
  • [2] Polymer Directed Self-Assembly of pH-Responsive Antioxidant Nanoparticles
    Tang, Christina
    Amin, Devang
    Messersmith, Phillip B.
    Anthony, John E.
    Prad'homme, Robert K.
    [J]. LANGMUIR, 2015, 31 (12) : 3612 - 3620
  • [3] Self-assembly of temperature and pH-responsive pentablock copolymers
    Determan, MD
    Lo, CT
    Thiyagarajan, P
    Mallapragada, SK
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 230 : U3728 - U3728
  • [4] pH-Responsive porphyrin-silica nanoparticles conjugate via ionic self-assembly
    Fathalla, Maher
    Sinatra, Lutfan
    [J]. JOURNAL OF POROUS MATERIALS, 2021, 28 (01) : 183 - 189
  • [5] pH-Responsive porphyrin-silica nanoparticles conjugate via ionic self-assembly
    Maher Fathalla
    Lutfan Sinatra
    [J]. Journal of Porous Materials, 2021, 28 : 183 - 189
  • [6] pH-Responsive Reversible DNA Self-assembly Mediated by Zwitterion
    Yuhang Dong
    Xiaorui Pan
    Feng Li
    Dayong Yang
    [J]. Chemical Research in Chinese Universities, 2020, 36 : 285 - 290
  • [7] pH-Responsive self-assembly of homopolymers and the application as drug delivery
    Peng, HS
    Chen, DY
    Lu, YF
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 230 : U3677 - U3677
  • [8] pH-responsive self-assembly of fluorophore-ended homopolymers
    Zhang, Jin
    You, Shusen
    Yan, Shouke
    Muellen, Klaus
    Yang, Wantai
    Yin, Meizhen
    [J]. CHEMICAL COMMUNICATIONS, 2014, 50 (56) : 7511 - 7513
  • [9] pH-Responsive Reversible DNA Self-assembly Mediated by Zwitterion
    Dong Yuhang
    Pan Xiaorui
    Li Feng
    Yang Dayong
    [J]. CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2020, 36 (02) : 285 - 290
  • [10] pH-Responsive Self-Assembly by Molecular Recognition on a Macroscopic Scale
    Zheng, Yongtai
    Hashidzume, Akihito
    Harada, Akira
    [J]. MACROMOLECULAR RAPID COMMUNICATIONS, 2013, 34 (13) : 1062 - 1066