Visual Redundancy Removal for Composite Images: A Benchmark Dataset and a Multi-Visual-Effects Driven Incremental Method

被引:0
|
作者
Wang, Miaohui [1 ]
Zhang, Rong [1 ]
Huang, Lirong [1 ]
Li, Yanshan [1 ]
机构
[1] Shenzhen Univ, Guangdong Key Lab Intelligent Informat Proc, Shenzhen 518060, Peoples R China
基金
中国国家自然科学基金;
关键词
NOTICEABLE DIFFERENCE ESTIMATION; PROFILE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Composite images (CIs) typically combine various elements from different scenes, views, and styles, which are a very important information carrier in the era of mixed media such as virtual reality, mixed reality, metaverse, etc. However, the complexity of CI content presents a significant challenge for subsequent visual perception modeling and compression. In addition, the lack of benchmark CI databases also hinders the use of recent advanced data-driven methods. To address these challenges, we first establish one of the earliest visual redundancy prediction (VRP) databases for CIs. Moreover, we propose a multi-visual effect (MVE)-driven incremental learning method that combines the strengths of hand-crafted and data-driven approaches to achieve more accurate VRP modeling. Specifically, we design special incremental rules to learn the visual knowledge flow of MVE. To effectively capture the associated features of MVE, we further develop a three-stage incremental learning approach for VRP based on an encoder-decoder network. Extensive experimental results validate the superiority of the proposed method in terms of subjective, objective, and compression experiments.
引用
收藏
页码:10189 / 10197
页数:9
相关论文
共 11 条
  • [1] Visual Redundancy Removal of Composite Images via Multimodal Learning
    Xie, Wuyuan
    Wang, Shukang
    Zhang, Rong
    Wang, Miaohui
    [J]. PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 6765 - 6773
  • [2] Visual pollution real images benchmark dataset on the public roads
    AlElaiwi, Mohammad
    Al-antari, Mugahed A.
    Ahmad, Hafiz Farooq
    Azhar, Areeba
    Almarri, Badar
    Hussain, Jamil
    [J]. DATA IN BRIEF, 2023, 50
  • [3] SID4VAM: A Benchmark Dataset with Synthetic Images for Visual Attention Modeling
    Berga, David
    Fdez-Vidal, Xose R.
    Otazu, Xavier
    Pardo, Xose M.
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 8788 - 8797
  • [4] VISUAL COMMUNICATION METHOD OF MULTI FRAME FILM AND TELEVISION SPECIAL EFFECTS IMAGES BASED ON DEEP LEARNING
    Zhang, Jinglei
    [J]. Scalable Computing, 2024, 25 (06): : 5460 - 5468
  • [5] A visual cryptographic technique for chromatic images using multi-pixel encoding method
    Hou, YC
    Tu, SF
    [J]. JOURNAL OF RESEARCH AND PRACTICE IN INFORMATION TECHNOLOGY, 2005, 37 (02): : 179 - 191
  • [6] GRAPE: A multi-modal dataset of longitudinal follow-up visual field and fundus images for glaucoma management
    Xiaoling Huang
    Xiangyin Kong
    Ziyan Shen
    Jing Ouyang
    Yunxiang Li
    Kai Jin
    Juan Ye
    [J]. Scientific Data, 10
  • [7] GRAPE: A multi-modal dataset of longitudinal follow-up visual field and fundus images for glaucoma management
    Huang, Xiaoling
    Kong, Xiangyin
    Shen, Ziyan
    Ouyang, Jing
    Li, Yunxiang
    Jin, Kai
    Ye, Juan
    [J]. SCIENTIFIC DATA, 2023, 10 (01)
  • [8] Non-visual Effects Driven Fatigue Level Recognition Method for Enclosed Space Workers
    Zhang, Xian
    Feng, Yuan
    Wang, Jingluan
    Chen, Dengkai
    [J]. DISTRIBUTED, AMBIENT AND PERVASIVE INTERACTIONS, PT II, DAPI 2024, 2024, 14719 : 172 - 185
  • [9] Visual-Perception-Driven Reuse Method of Illumination Computation in Rendering Stereoscopic Images of 3D Scenes
    Shen Z.
    Chen C.
    Yu H.
    Zhang R.
    Hu X.
    [J]. Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2023, 35 (05): : 708 - 718
  • [10] An Alternating Training Method of Attention-Based Adapters for Visual Explanation of Multi-Domain Satellite Images
    Kim, Heejae
    Lee, Kyungchae
    Lee, Changha
    Hwang, Sanghyun
    Youn, Chan-Hyun
    [J]. IEEE ACCESS, 2021, 9 : 62332 - 62346