Latent Diffusion for Language Generation

被引:0
|
作者
Lovelace, Justin [1 ]
Kishore, Varsha [1 ]
Wan, Chao [1 ]
Shekhtman, Eliot [1 ]
Weinberger, Kilian Q. [1 ]
机构
[1] Cornell Univ, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Diffusion models have achieved great success in modeling continuous data modalities such as images, audio, and video, but have seen limited use in discrete domains such as language. Recent attempts to adapt diffusion to language have presented diffusion as an alternative to existing pretrained language models. We view diffusion and existing language models as complementary. We demonstrate that encoder-decoder language models can be utilized to efficiently learn high-quality language autoencoders. We then demonstrate that continuous diffusion models can be learned in the latent space of the language autoencoder, enabling us to sample continuous latent representations that can be decoded into natural language with the pretrained decoder. We validate the effectiveness of our approach for unconditional, class-conditional, and sequence-to-sequence language generation. We demonstrate across multiple diverse data sets that our latent language diffusion models are significantly more effective than previous diffusion language models. Our code is available at https://github.com/justinlovelace/latent-diffusion-for-language.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] SignGen: End-to-End Sign Language Video Generation with Latent Diffusion
    Qi, Fan
    Duan, Yu
    Zhang, Huaiwen
    Xu, Changsheng
    COMPUTER VISION - ECCV 2024, PT LIII, 2025, 15111 : 252 - 270
  • [2] Graphusion: Latent Diffusion for Graph Generation
    Yang, Ling
    Huang, Zhilin
    Zhang, Zhilong
    Liu, Zhongyi
    Hong, Shenda
    Zhang, Wentao
    Yang, Wenming
    Cui, Bin
    Zhang, Luxia
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (11) : 6358 - 6369
  • [3] A Latent Diffusion Model for Protein Structure Generation
    Fu, Cong
    Yan, Keqiang
    Wang, Limei
    Au, Wing Yee
    McThrow, Michael
    Komikado, Tao
    Maruhashi, Koji
    Uchino, Kanji
    Qian, Xiaoning
    Ji, Shuiwang
    LEARNING ON GRAPHS CONFERENCE, VOL 231, 2023, 231
  • [4] BASS ACCOMPANIMENT GENERATION VIA LATENT DIFFUSION
    Pasini, Marco
    Grachten, Maarten
    Lattner, Stefan
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024, 2024, : 1166 - 1170
  • [5] Brain Imaging Generation with Latent Diffusion Models
    Pinaya, Walter H. L.
    Tudosiu, Petru-Daniel
    Dafflon, Jessica
    Da Costa, Pedro F.
    Fernandez, Virginia
    Nachev, Parashkev
    Ourselin, Sebastien
    Cardoso, M. Jorge
    DEEP GENERATIVE MODELS, DGM4MICCAI 2022, 2022, 13609 : 117 - 126
  • [6] Latent diffusion transformer for point cloud generation
    Ji, Junzhong
    Zhao, Runfeng
    Lei, Minglong
    VISUAL COMPUTER, 2024, 40 (06): : 3903 - 3917
  • [7] Latent Diffusion for Guided Document Table Generation
    Hamdani, Syed Jawwad Haider
    Saifullah, Saifullah
    Agne, Stefan
    Dengel, Andreas
    Ahmed, Sheraz
    DOCUMENT ANALYSIS AND RECOGNITION-ICDAR 2024, PT V, 2024, 14808 : 368 - 383
  • [8] Medical Image Generation based on Latent Diffusion Models
    Song, Wenbo
    Jiang, Yan
    Fang, Yin
    Cao, Xinyu
    Wu, Peiyan
    Xing, Hanshuo
    Wu, Xinglong
    2023 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE INNOVATION, ICAII 2023, 2023, : 89 - 93
  • [9] GENERATION OR REPLICATION: AUSCULTATING AUDIO LATENT DIFFUSION MODELS
    Bralios, Dimitrios
    Wichern, Gordon
    Germain, Francois G.
    Pan, Zexu
    Khurana, Sameer
    Hori, Chiori
    Le Roux, Jonathan
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024, 2024, : 1156 - 1160
  • [10] Latent diffusion model for conditional reservoir facies generation
    Lee, Daesoo
    Ovanger, Oscar
    Eidsvik, Jo
    Aune, Erlend
    Skauvold, Jacob
    Hauge, Ragnar
    COMPUTERS & GEOSCIENCES, 2025, 194