Algebraic fibre spaces with strictly nef relative anti-log canonical divisor

被引:1
|
作者
Liu, Jie [1 ]
Ou, Wenhao [1 ]
Wang, Juanyong [2 ]
Yang, Xiaokui [3 ]
Zhong, Guolei [4 ,5 ]
机构
[1] Chinese Acad Sci, Inst Math, Acad Math & Syst Sci, Beijing, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, HCMS, Beijing, Peoples R China
[3] Tsinghua Univ, Yau Math Sci Ctr, Dept Math, Beijing, Peoples R China
[4] Natl Univ Singapore, Dept Math, Singapore, Singapore
[5] Inst for Basic Sci Korea, Ctr Complex Geometry, 55 Expo Ro, Daejeon, South Korea
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
COMPACT KAHLER MANIFOLD; PROJECTIVE-MANIFOLDS; RATIONAL CONNECTEDNESS; VARIETIES; BUNDLES; THEOREM;
D O I
10.1112/jlms.12942
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (X,Delta)$(X,\varDelta)$ be a projective klt pair, and f:X -> Y$f\colon X\rightarrow Y$ a fibration to a smooth projective variety Y$Y$ with strictly nef relative anti-log canonical divisor -(KX/Y+Delta)$-(K_{X/Y}+\varDelta)$. We prove that f$f$ is a locally trivial fibration with rationally connected fibres, and the base Y$Y$ is a canonically polarized hyperbolic manifold. In particular, when Y$Y$ is a single point, we establish that X$X$ is rationally connected. Moreover, when dimX=3$\dim X=3$ and -(KX+Delta)$-(K_X+\varDelta)$ is strictly nef, we prove that -(KX+Delta)$-(K_X+\varDelta)$ is ample, which confirms the singular version of a conjecture by Campana and Peternell for threefolds.
引用
收藏
页数:26
相关论文
共 9 条