BPNet: Bezier Primitive Segmentation on 3D Point Clouds

被引:0
|
作者
Fu, Rao [1 ,2 ]
Wen, Cheng [3 ]
Li, Qian [1 ]
Xiao, Xiao [4 ]
Alliez, Pierre [1 ]
机构
[1] INRIA, Paris, France
[2] Geometry Factory, Valbonne, France
[3] Univ Sydney, Camperdown, Australia
[4] Shanghai Jiao Tong Univ, Shanghai, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes BPNet, a novel end-to-end deep learning framework to learn B ' ezier primitive segmentation on 3D point clouds. The existing works treat different primitive types separately, thus limiting them to finite shape categories. To address this issue, we seek a generalized primitive segmentation on point clouds. Taking inspiration from B ' ezier decomposition on NURBS models, we transfer it to guide point cloud segmentation casting off primitive types. A joint optimization framework is proposed to learn B ' ezier primitive segmentation and geometric fitting simultaneously on a cascaded architecture. Specifically, we introduce a soft voting regularizer to improve primitive segmentation and propose an auto-weight embedding module to cluster point features, making the network more robust and generic. We also introduce a reconstruction module where we successfully process multiple CAD models with different primitives simultaneously. We conducted extensive experiments on the synthetic ABC dataset and real-scan datasets to validate and compare our approach with different baseline methods. Experiments show superior performance over previous work in terms of segmentation, with a substantially faster inference speed.
引用
收藏
页码:754 / 762
页数:9
相关论文
共 50 条
  • [1] On the Segmentation of 3D LIDAR Point Clouds
    Douillard, B.
    Underwood, J.
    Kuntz, N.
    Vlaskine, V.
    Quadros, A.
    Morton, P.
    Frenkel, A.
    [J]. 2011 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2011,
  • [2] SoftGroup for 3D Instance Segmentation on Point Clouds
    Thang Vu
    Kim, Kookhoi
    Luu, Tung M.
    Thanh Nguyen
    Yoo, Chang D.
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 2698 - 2707
  • [3] Interactive Object Segmentation in 3D Point Clouds
    Kontogianni, Theodora
    Celikkan, Ekin
    Tang, Siyu
    Schindler, Konrad
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA, 2023, : 2891 - 2897
  • [4] SEGCloud: Semantic Segmentation of 3D Point Clouds
    Tchapmi, Lyne P.
    Choy, Christopher B.
    Armeni, Iro
    Gwak, JunYoung
    Savarese, Silvio
    [J]. PROCEEDINGS 2017 INTERNATIONAL CONFERENCE ON 3D VISION (3DV), 2017, : 537 - 547
  • [5] Point attention network for semantic segmentation of 3D point clouds
    Feng, Mingtao
    Zhang, Liang
    Lin, Xuefei
    Gilani, Syed Zulqarnain
    Mian, Ajmal
    [J]. PATTERN RECOGNITION, 2020, 107 (107)
  • [6] Scalable SoftGroup for 3D Instance Segmentation on Point Clouds
    Vu, Thang
    Kim, Kookhoi
    Nguyen, Thanh
    Luu, Tung M.
    Kim, Junyeong
    Yoo, Chang D.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (04) : 1981 - 1995
  • [7] GrowSP: Unsupervised Semantic Segmentation of 3D Point Clouds
    Zhang, Zihui
    Yang, Bo
    Wang, Bing
    Li, Bo
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 17619 - 17629
  • [8] Fast Segmentation of 3D Point Clouds for Ground Vehicles
    Himmelsbach, M.
    v. Hundelshausen, Felix
    Wuensche, H. -J.
    [J]. 2010 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2010, : 560 - 565
  • [9] 3D Segmentation of Humans in Point Clouds with Synthetic Data
    Takmaz, Ayca
    Schult, Jonas
    Kaftan, Irem
    Akcay, Mertcan
    Leibe, Bastian
    Sumner, Robert
    Engelmann, Francis
    Tang, Siyu
    [J]. 2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 1292 - 1304
  • [10] 3D Point Clouds Segmentation for Autonomous Ground Vehicle
    Habermann, Danilo
    Hata, Alberto
    Wolf, Denis
    Osorio, Fernando
    [J]. 2013 III BRAZILIAN SYMPOSIUM ON COMPUTING SYSTEMS ENGINEERING (SBESC 2013), 2013, : 143 - 148