Periodic Orbit-Dividing Surfaces in Rotating Hamiltonian Systems with Two Degrees of Freedom

被引:0
|
作者
Katsanikas, Matthaios [1 ,2 ]
Wiggins, Stephen [2 ,3 ,4 ]
机构
[1] Acad Athens, Res Ctr Astron & Appl Math, Soranou Efesiou 4, GR-11527 Athens, Greece
[2] Univ Bristol, Sch Math, Fry Bldg,Woodland Rd, Bristol BS8 1UG, England
[3] Univ Bristol, Sch Math, Fry Bldg,Woodland Rd, Bristol BS8 1UG, England
[4] US Naval Acad, Dept Math, Chauvenet Hall, 572C Holloway Rd, Annapolis, MD 21402 USA
来源
基金
英国工程与自然科学研究理事会;
关键词
Chemical reaction dynamics; phase space; Hamiltonian system; periodic orbit; dividing surface; normally hyperbolic invariant manifold; dynamical astronomy; rotational dynamics; TRANSITION-STATE THEORY; PHASE-SPACE; DYNAMICS; TORI;
D O I
10.1142/S021812742450130X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we extend the notion of periodic orbit-dividing surfaces (PODS) to rotating Hamiltonian systems with two degrees of freedom. First, we present a method that enables us to apply the classical algorithm for the construction of PODS [Pechukas & McLafferty, 1973; Pechukas, 1981; Pollak & Pechukas, 1978; Pollak, 1985] in rotating Hamiltonian systems with two degrees of freedom. Then we study the structure of these surfaces in a rotating quadratic normal-form Hamiltonian system with two degrees of freedom.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Periodic Orbit-Dividing Surfaces in Rotating Hamiltonian Systems with Three Degrees of Freedom - I
    Katsanikas, Matthaios
    Wiggins, Stephen
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2024, 34 (11):
  • [2] Periodic Orbit Dividing Surfaces in Rotating Hamiltonian Systems with Three Degrees of Freedom - II
    Katsanikas, Matthaios
    Wiggins, Stephen
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2024,
  • [3] Periodic Orbit Dividing Surfaces in a Quartic Hamiltonian System with Three Degrees of Freedom - II
    Montoya, Francisco Gonzalez
    Katsanikas, Matthaios
    Wiggins, Stephen
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2024, 34 (10):
  • [4] Periodic Orbit Dividing Surfaces in a Quartic Hamiltonian System with Three Degrees of Freedom - I
    Montoya, Francisco Gonzalez
    Katsanikas, Matthaios
    Wiggins, Stephen
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2024, 34 (05):
  • [5] The Generalization of the Periodic Orbit Dividing Surface in Hamiltonian Systems with Three or More Degrees of Freedom - I
    Katsanikas, Matthaios
    Wiggins, Stephen
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2021, 31 (10):
  • [6] The Generalization of the Periodic Orbit Dividing Surface for Hamiltonian Systems with Three or More Degrees of Freedom - II
    Katsanikas, Matthaios
    Wiggins, Stephen
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2021, 31 (12):
  • [7] The Generalization of the Periodic Orbit Dividing Surface for Hamiltonian Systems with Three or More Degrees of Freedom - IV
    Katsanikas, Matthaios
    Wiggins, Stephen
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2023, 33 (08):
  • [8] The Generalization of the Periodic Orbit Dividing Surface for Hamiltonian Systems with Three or More Degrees of Freedom-III
    Katsanikas, Matthaios
    Wiggins, Stephen
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2023, 33 (07):
  • [9] 2D Generating Surfaces and Dividing Surfaces in Hamiltonian Systems with Three Degrees of Freedom
    Katsanikas, Matthaios
    Wiggins, Stephen
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2024, 34 (01):
  • [10] Stability criteria for periodic solutions of autonomous Hamiltonian systems with two degrees of freedom
    Zevin, AA
    [J]. NONLINEARITY, 1998, 11 (01) : 19 - 26