Doppler Sidelobe Suppression via Quasi-Neural Network for ST-CDMA MIMO Radar

被引:0
|
作者
Liang, Can [1 ,2 ,3 ,4 ,5 ]
Hu, Xueyao [1 ,2 ,3 ,4 ,5 ]
Zhu, Rui [1 ,2 ,3 ,4 ,5 ]
Zhang, Liang [1 ,2 ,3 ,4 ,5 ]
Wang, Yanhua [1 ,2 ,3 ,4 ,5 ]
机构
[1] Beijing Inst Technol, Sch Informat & Elect, Beijing 100081, Peoples R China
[2] Beijing Key Lab Embedded Real Time Informat Proc T, Beijing 100081, Peoples R China
[3] CEMEE State Key Lab, Electromagnet Sensing Res Ctr, Beijing 100081, Peoples R China
[4] Beijing Inst Technol, Chongqing Innovat Ctr, Chongqing 401120, Peoples R China
[5] Beijing Inst Technol, Adv Technol Res Inst, Jinan 250300, Peoples R China
基金
中国国家自然科学基金;
关键词
Multiple-input multiple-output (MIMO) radar; quasi-neural network (Quasi-NN); sidelobe suppression; slow-time code division multiple access (ST-CDMA); WAVE-FORM; OPTIMIZATION;
D O I
10.1109/JSEN.2024.3368482
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In co-located multiple-input multiple-output (MIMO) radar, slow-time code division multiple access (ST-CDMA) is an essential option of orthogonal waveforms, because the transmit power and bandwidth are well exploited with a relatively low level of hardware complexity. However, the code produces high sidelobes in the Doppler spectrum, which poses a negative impact on weak target detection. To address this issue, we propose a novel sidelobe suppression method that leverages the CLEAN framework in conjunction with a quasi-neural network (Quasi-NN). The novelty lies in the application of Quasi-NN for signal modeling in the target parameter estimation step of CLEAN. Specifically, Quasi-NN is employed to represent the signal after range compression. Its inputs, outputs, and internal weights are determined by the characteristics of antennas, waveforms, and targets. In this way, the estimation of target parameters is transformed into the optimization of weights, which thereby can be solved using a back-propagation (BP) algorithm. Simulation results demonstrate the superior performance of the proposed method under various scenarios. Real-data results using a 77-GHz radar also show that the proposed method achieves lower sidelobes and thus improves the detection of weak targets.
引用
收藏
页码:13545 / 13559
页数:15
相关论文
共 10 条
  • [1] MIMO Radar Receiver Design Based on Doppler Compensation for Range and Doppler Sidelobe Suppression
    Chen, Jinli
    Li, Jiaqiang
    Yang, Lingsheng
    Li, Peng
    IEICE TRANSACTIONS ON ELECTRONICS, 2015, E98C (10): : 977 - 980
  • [2] Sidelobe suppression with constraint for MIMO radar via chaotic whale optimisation
    Yuan, Pengliang
    Guo, Chenjiang
    Zheng, Qi
    Ding, Jun
    ELECTRONICS LETTERS, 2018, 54 (05) : 311 - 313
  • [3] Receiver Design for Range and Doppler Sidelobe Suppression Using MIMO and Phased-Array Radar
    Hua, Guang
    Abeysekera, Saman S.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (06) : 1315 - 1326
  • [4] Distributed Downlink Precoding for Cell-Free Massive MIMO: A Quasi-Neural Network Approach
    Dai, Weijie
    Wang, Rui
    Liu, Junkai
    Jiang, Yi
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2025, 73 (02) : 1157 - 1168
  • [5] MIMO Radar Range-Angular-Doppler Sidelobe Suppression Using Random Space-Time Coding
    Zhou, Shenghua
    Liu, Hongwei
    Wang, Xu
    Cao, Yunhe
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2014, 50 (03) : 2047 - 2060
  • [6] A neural network sidelobe suppression filter for a pulse-compression radar with powers-of-two weights
    Grishin, YP
    Zankiewicz, A
    MELECON 2000: INFORMATION TECHNOLOGY AND ELECTROTECHNOLOGY FOR THE MEDITERRANEAN COUNTRIES, VOLS 1-3, PROCEEDINGS, 2000, : 713 - 716
  • [7] Fast Target Localization Method for FMCW MIMO Radar via VDSR Neural Network
    Cong, Jingyu
    Wang, Xianpeng
    Lan, Xiang
    Huang, Mengxing
    Wan, Liangtian
    REMOTE SENSING, 2021, 13 (10)
  • [8] An antenna subset selection algorithm in distributed MIMO radar for target localization via convolutional neural network
    Yan, Yingfei
    Tao, Haihong
    Su, Jia
    IET RADAR SONAR AND NAVIGATION, 2023, 17 (10): : 1538 - 1548
  • [9] Object and Direction Classification Based on Range-Doppler Map of 79 GHz MIMO Radar Using a Convolutional Neural Network
    Shirakata, Naganori
    Iwasa, Kenta
    Yui, Tomohiro
    Yomo, Hidekuni
    Murata, Tomohiro
    Sato, Junji
    2019 12TH GLOBAL SYMPOSIUM ON MILLIMETER WAVES (GSMM 2019), 2019, : 1 - 3
  • [10] A Multi-Layer Perceptrons Neural Network for 3D Human Target Imaging via MIMO Through-the-Wall Radar
    Huang, Guangjia
    Hu, Jun
    Lin, Junyu
    Xiao, Yu
    Zhang, Yue
    Guo, Rui
    Xu, Shiyou
    2024 INTERNATIONAL RADAR SYMPOSIUM, IRS 2024, 2024, : 250 - 255