Normal Data-Based Motor Fault Diagnosis Using Stacked Time-Series Imaging Method

被引:0
|
作者
Jung, W. [1 ]
Lim, D. G. [1 ]
Lim, B. H. [2 ]
Park, Y. H. [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Mech Engn, Daejeon 34141, South Korea
[2] Samsung Heavy Ind, Autonomous Ship Res Ctr, Daejeon 34051, South Korea
关键词
Fault diagnosis; time-series imaging; motor current signature analysis; deep learning; convolutional neural networks;
D O I
10.1117/12.3025103
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In most engineering systems, the acquisition of faulty data is difficult or sometimes not feasible, while normal data are secured. To solve these problems, this paper proposes an fault diagnosis method for electric motor using only normal data with self-labeling based on stacked time-series imaging method. Since only normal data are used for fault diagnosis, a selflabeling method is used to generate a new labeled dataset based on pretext task. To emphasize faulty features from nonstationary faulty data, stacked time-series imaging method is developed. The overall procedure includes the following steps: (1) transformation of a one-dimensional current signal to a two-dimensional image in time-domain, (2) adding sparse features with sparse dictionary learning, ( 3) stacked images through every window size, and (4) fault classification based on convolutional neural network (CNN) and Mahalanobis distance. Transformation of the time-series signal is based on recurrence plots (RP). The proposed RP method develops from sparse dictionary learning that provides the dominant fault feature representations in a robust way. To verify the proposed method, data from real-field manufacturing line is used.
引用
收藏
页数:3
相关论文
共 50 条
  • [1] A planetary gearbox fault diagnosis method based on time-series imaging feature fusion and a transformer model
    Wu, Rui
    Liu, Chao
    Han, Te
    Yao, Jiachi
    Jiang, Dongxiang
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (02)
  • [2] A novel fault diagnosis method for wind turbine based on adaptive multivariate time-series convolutional network using SCADA data
    Zhang, Guangyao
    Li, Yanting
    Zhao, Yu
    ADVANCED ENGINEERING INFORMATICS, 2023, 57
  • [3] Real-Time Data-Based Fault Diagnosis System
    Wang, Hai
    MANUFACTURING PROCESS TECHNOLOGY, PTS 1-5, 2011, 189-193 : 2621 - 2624
  • [4] Fault Diagnosis Method for Human Coexistence Robots Based on Convolutional Neural Networks Using Time-Series Data Generation and Image Encoding
    Choi, Seung-Hwan
    Park, Jun-Kyu
    An, Dawn
    Kim, Chang-Hyun
    Park, Gunseok
    Lee, Inho
    Lee, Suwoong
    SENSORS, 2023, 23 (24)
  • [5] Weighted time series fault diagnosis based on a stacked sparse autoencoder
    Lv, Feiya
    Wen, Chenglin
    Liu, Meiqin
    Bao, Zhejing
    JOURNAL OF CHEMOMETRICS, 2017, 31 (09)
  • [6] Application of time-series data mining for fault diagnosis of induction motors
    Bae, H
    Kim, S
    Kim, YT
    Lee, SH
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2005, VOL 4, PROCEEDINGS, 2005, 3483 : 1085 - 1094
  • [7] A simple and efficient method for fault diagnosis using time series data mining
    Aydin, I.
    Karakose, M.
    Akin, E.
    IEEE IEMDC 2007: PROCEEDINGS OF THE INTERNATIONAL ELECTRIC MACHINES AND DRIVES CONFERENCE, VOLS 1 AND 2, 2007, : 596 - +
  • [8] A Multi-Output Deep Learning Model for Fault Diagnosis Based on Time-Series Data
    Al-Ajeli, Ahmed
    Alshamery, Eman S.
    INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT, 2024, 15 (01)
  • [9] Satellite fault detection method based on time-series modeling
    Yang Kaifei
    Han Xiaodong
    Lyu Yuancao
    Xu Nan
    Gong Jianglei
    Li Xiang
    CHINESE SPACE SCIENCE AND TECHNOLOGY, 2023, 43 (02) : 93 - 102
  • [10] A Data-Driven Long Time-Series Electrical Line Trip Fault Prediction Method Using an Improved Stacked-Informer Network
    Guo, Li
    Li, Runze
    Jiang, Bin
    SENSORS, 2021, 21 (13)