An Empirical Analysis of Intervention Strategies' Effectiveness for Countering Misinformation Amplification by Recommendation Algorithms

被引:1
|
作者
Pathak, Royal [1 ]
Spezzano, Francesca [1 ]
机构
[1] Boise State Univ, Comp Sci Dept, Boise, ID 83725 USA
基金
美国国家科学基金会;
关键词
Social networks; Misinformation Mitigation; Intervention Strategies; Virality Circuit Breakers; Accuracy Nudges; FAKE NEWS;
D O I
10.1007/978-3-031-56066-8_23
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Social network platforms connect people worldwide, facilitating communication, information sharing, and personal/professional networking. They use recommendation algorithms to personalize content and enhance user experiences. However, these algorithms can unintentionally amplify misinformation by prioritizing engagement over accuracy. For instance, recent works suggest that popularity-based and network-based recommendation algorithms contribute the most to misinformation diffusion. In our study, we present an exploration on two Twitter datasets to understand the impact of intervention techniques on combating misinformation amplification initiated by recommendation algorithms. We simulate various scenarios and evaluate the effectiveness of intervention strategies in social sciences such as Virality Circuit Breakers and accuracy nudges. Our findings highlight that these intervention strategies are generally successful when applied on top of collaborative filtering and content-based recommendation algorithms, while having different levels of effectiveness depending on the number of users keen to spread fake news present in the dataset.
引用
收藏
页码:285 / 301
页数:17
相关论文
共 26 条
  • [1] Intervention Strategies for Misinformation Sharing on Social Media: A Bibliometric Analysis
    Institute of Visual Informatics , Universiti Kebangsaan Malaysia, Bangi
    43600, Malaysia
    不详
    56100, Malaysia
    不详
    9 D09, Ireland
    [J]. IEEE Access, 2024, (140359-140379)
  • [2] Personality-aware followee recommendation algorithms: An empirical analysis
    Tommasel, Antonela
    Corbellini, Alejandro
    Godoy, Daniela
    Schiaffino, Silvia
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2016, 51 : 24 - 36
  • [3] Empirical analysis of attribute-aware recommendation algorithms with variable synthetic data
    Tso, Karen H. L.
    Schmidt-Thieme, Lars
    [J]. DATA SCIENCE AND CLASSIFICATION, 2006, : 271 - +
  • [4] Tuberculosis in Ethiopia: Optimal Intervention Strategies and Cost-Effectiveness Analysis
    Mengistu, Ashenafi Kelemu
    Witbooi, Peter J.
    [J]. AXIOMS, 2022, 11 (07)
  • [5] Empirical analysis of session-based recommendation algorithms A comparison of neural and non-neural approaches
    Ludewig, Malte
    Mauro, Noemi
    Latifi, Sara
    Jannach, Dietmar
    [J]. USER MODELING AND USER-ADAPTED INTERACTION, 2021, 31 (01) : 149 - 181
  • [6] Optimal control of intervention strategies and cost effectiveness analysis for a Zika virus model
    Momoh, Abdulfatai A.
    Fuegenschuh, Armin
    [J]. OPERATIONS RESEARCH FOR HEALTH CARE, 2018, 18 : 99 - 111
  • [7] An empirical analysis of binary transformation strategies and base algorithms for multi-label learning
    Adriano Rivolli
    Jesse Read
    Carlos Soares
    Bernhard Pfahringer
    André C. P. L. F. de Carvalho
    [J]. Machine Learning, 2020, 109 : 1509 - 1563
  • [8] An empirical analysis of binary transformation strategies and base algorithms for multi-label learning
    Rivolli, Adriano
    Read, Jesse
    Soares, Carlos
    Pfahringer, Bernhard
    de Carvalho, Andre C. P. L. F.
    [J]. MACHINE LEARNING, 2020, 109 (08) : 1509 - 1563
  • [9] Modeling, optimal control of intervention strategies and cost effectiveness analysis for buruli ulcer model
    Momoh, Abdulfatai Atte
    Abdullahi, Harrisu Muhammed
    Abimbola, Nurudeen G. A.
    Michael, Ali I.
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2021, 60 (02) : 2245 - 2264
  • [10] Mathematical modeling for COVID-19 with focus on intervention strategies and cost-effectiveness analysis
    Yang Deng
    Yi Zhao
    [J]. Nonlinear Dynamics, 2022, 110 : 3893 - 3919