EXPERIMENTAL INVESTIGATIONS INTO THE EFFECT OF SURFACE ROUGHNESS AND CONTACT FORCE ON LEAKAGE BETWEEN TWO RIGID METALLIC SURFACES

被引:0
|
作者
Bricaud, Cyrille [1 ]
Schulz, Oliver [1 ]
Zierer, Thomas [1 ]
Peltier, Vincent [2 ]
Schwitzke, Corina [2 ]
Bauer, Hans-Joerg [2 ]
机构
[1] Ansaldo Energia Switzerland, Haselstr 18, CH-5400 Baden, Switzerland
[2] Karlsruher Inst Technol KIT, Inst Thermal Turbomachinery ITS, Kaiserstr 12, D-76131 Karlsruhe, Germany
关键词
leakage air; roughness; contact; fretting; metallic surfaces; compression force; COMPRESSIVE STRESS;
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Current research and development efforts in the field of heavy-duty gas turbines focus on increasing engine efficiencies, lowering combustor emissions and extending inspection intervals. To achieve further improvements in these development fields, it is crucial for gas turbine manufacturers to continuously build up knowledge on leakage air inside different components of gas turbines. Leakage air can by nature be hardly predicted and is usually only estimated indirectly in real engines. Therefore, investigations on representative test rigs remain a fundamental method for quantifying air leakages more accurately. This article deals with a specific air leakage, which can occur between two firmly pressed rigid surfaces. One challenge for the engineers is to predict the leakage for new surfaces but also used surfaces with fretting corrosion and wear marks as a function of the contact force. In this perspective, air mass flow measurements were performed in a leakage test rig for different contact geometries, pressure ratios and compression levels between the surfaces. The purpose of the analysis is to determine the potential effect of the roughness, length, curvature and contact forces of the pressed surfaces on the leakage amount. The presented measurement procedure and results contribute to the extension of the leakage characteristic database for generic gas turbine components.
引用
收藏
页数:11
相关论文
共 50 条