Microwave dielectric properties and LTCC applications of new glass-free molybdate ceramics Li3Ba2Ln3(MoO4)8 (Ln=Gd, Tm)

被引:2
|
作者
Li, Meiying [1 ]
Huang, Binghong [2 ]
Shang, Fei [1 ]
Chen, Guohua [1 ,2 ]
机构
[1] Guilin Univ Elect Technol, Sch Mat Sci & Engn, Guilin 541004, Peoples R China
[2] Guilin Univ Elect Technol, Guangxi Key Lab Informat Mat, Guilin 541004, Peoples R China
基金
中国国家自然科学基金;
关键词
Molybdate ceramic; Microwave dielectric properties; LTCC; CRYSTAL-STRUCTURE; LN; MICROSTRUCTURE;
D O I
10.1016/j.ceramint.2024.04.266
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The traditional solid-state sintering method was employed to prepare Li 3 Ba 2 Ln 3 (MoO 4 ) 8 (Ln = Gd, Tm) ceramics, and the impact of firing temperature on the structure, microstructure and microwave dielectric properties of the novel molybdate Li 3 Ba 2 Ln 3 (MoO 4 ) 8 (Ln = Gd, Tm) ceramics was examined. XRD and Rietveld refinement outcomes validate the monoclinic system with the C2 / c space group for Li 3 Ba 2 Ln 3 (MoO 4 ) 8 (Ln = Gd, Tm). For the Li 3 Ba 2 Gd 3 (MoO 4 ) 8 ceramic sintered at 800 degrees C, a e r is 9.42, a Q x f is 16,988 GHz, and a ti f is 4.57 ppm/ degrees C. The Li 3 Ba 2 Tm 3 (MoO 4 ) 8 ceramic sintered at 800 degrees C has a e r of 9.74, a Q x f of 25,401 GHz, and a ti f of 1.08 ppm/ degrees C. XRD and EDS analyses prove the good chemical compatibility of the co-sintered Li 3 Ba 2 Gd 3 (MoO 4 ) 8 ceramic with the Ag electrode. Therefore, the Li 3 Ba 2 Gd 3 (MoO 4 ) 8 ceramic is suitable candidate material for LTCC applications.
引用
收藏
页码:25349 / 25354
页数:6
相关论文
共 50 条
  • [1] Growth, crystal structure, and properties of the Li3Ba2Ln3(MoO4)8 (Ln = Er, Tm) molybdates
    Armand, P.
    Granier, D.
    Reibel, C.
    Tillard, M.
    Solid State Sciences, 2022, 123
  • [2] Growth, crystal structure, and properties of the Li3Ba2Ln3(MoO4)8 (Ln = Er, Tm) molybdates
    Armand, P.
    Granier, D.
    Reibel, C.
    Tillard, M.
    SOLID STATE SCIENCES, 2022, 123
  • [3] CRYSTAL-STRUCTURE INVESTIGATION OF TERNARY MOLYBDATES LI3BA2LN3(MOO4)3 (LN = GD, TM)
    KLEVTSOVA, RF
    VASILEV, AD
    GLINSKAYA, LA
    KRUGLIK, AI
    KOZHEVNIKOVA, NM
    KORSUN, VP
    JOURNAL OF STRUCTURAL CHEMISTRY, 1992, 33 (03) : 443 - 447
  • [4] Microwave dielectric properties of ternary molybdate NaSrLn(MoO4)3 (Ln = Nd, Sm) ceramics for LTCC applications
    Wei, Xiaoli
    He, Yinghan
    Tang, Mulan
    Yang, Jianhui
    Wu, You
    Chen, Xiuli
    Zhou, Huanfu
    CERAMICS INTERNATIONAL, 2023, 49 (14) : 23864 - 23870
  • [5] Growth and spectral properties of Nd3+-doped Li3Ba2Ln3(MoO4) (Ln = La, Gd) crystals
    Song, Mingjun
    Zhang, Lizhen
    Wang, Guofu
    JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 480 (02) : 839 - 842
  • [6] Synthesis, characterization and luminescent properties of novel red emitting phosphor Li3Ba2Ln3(MoO4)8:Eu3+ (Ln = La, Gd and Y) for white light-emitting diodes
    Guo, Chongfeng
    Gao, Fei
    Liang, Lifang
    Choi, Byung Chun
    Jeong, Jung-Hyun
    JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 479 (1-2) : 607 - 612
  • [7] Microwave Dielectric Properties of (Li0.5Ln0.5)MoO4 (Ln = Nd, Er, Gd, Y, Yb, Sm, and Ce) Ceramics
    Pang, Li-Xia
    Zhou, Di
    Guo, Jing
    Yue, Zhen-Xing
    Yao, Xi
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2015, 98 (01) : 130 - 135
  • [8] Sintering behavior, phase structure and microwave dielectric properties of novel glass-free low-temperature cofiring NaCaLn(MoO4)3(Ln = Nd, Sm) ceramics
    Gao, Pengxiang
    Liu, Kaiyang
    Wei, Xiaoli
    Li, Xu
    Chen, Xiuli
    Zhou, Huanfu
    CERAMICS INTERNATIONAL, 2024, 50 (04) : 6508 - 6516
  • [9] Low temperature fired Ln2Zr3(MoO4)9 (Ln=Sm, Nd) microwave dielectric ceramics
    Liu, Weiqiong
    Zuo, Ruzhong
    CERAMICS INTERNATIONAL, 2017, 43 (18) : 17229 - 17232
  • [10] Low-firing and microwave dielectric properties of a novel glass-free MoO3-based dielectric ceramic for LTCC applications
    Guojin Shu
    Fan Yang
    Liang Hao
    Qiao Zhang
    Fancheng Meng
    Huixing Lin
    Journal of Materials Science: Materials in Electronics, 2019, 30 : 7485 - 7489