MUKAI MODELS AND BORCHERDS PRODUCTS

被引:0
|
作者
Ma, Shouhei [1 ]
机构
[1] Tokyo Inst Technol, Dept Math, Tokyo 1528551, Japan
关键词
HOLOMORPHIC DIFFERENTIAL FORMS; KODAIRA DIMENSION; MODULI SPACE; K3; SURFACES; COMPACTIFICATION; FAMILIES; CURVES;
D O I
10.1353/ajm.2024.a928323
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F-g,F- n be the moduli space of n -pointed K 3 surfaces of genus g with at worst rational double points. We establish an isomorphism between the ring of pluricanonical forms on F-g,F- n and the ring of certain orthogonal modular forms, and give applications to the birational type of F g,n . We prove that the Kodaira dimension of F-g,F- n stabilizes to 19 when n is sufficiently large. Then we use explicit Borcherds products to find a lower bound of n where F-g,F- n has nonnegative Kodaira dimension, and compare this with an upper bound where F-g,F- n is unirational or uniruled using Mukai models of K 3 surfaces in g <= 20. This reveals the exact transition point of Kodaira dimension in some g .
引用
收藏
页码:713 / 749
页数:38
相关论文
共 50 条
  • [1] ALGEBRA OF BORCHERDS PRODUCTS
    Ma, Shouhei
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 375 (06) : 4285 - 4305
  • [2] Computing Borcherds products
    Gehre, Dominic
    Kreuzer, Judith
    Raum, Martin
    LMS JOURNAL OF COMPUTATION AND MATHEMATICS, 2013, 16 : 200 - 215
  • [3] Local borcherds products
    Bruinier, JH
    Freitag, E
    ANNALES DE L INSTITUT FOURIER, 2001, 51 (01) : 1 - +
  • [4] ARITHMETIC OF BORCHERDS PRODUCTS
    Howard, Benjamin
    Pera, Keerthi Madapusi
    ASTERISQUE, 2020, (421) : 187 - 297
  • [5] Borcherds Products Everywhere
    Gritsenko, Valery
    Poor, Cris
    Yuen, David S.
    JOURNAL OF NUMBER THEORY, 2015, 148 : 164 - 195
  • [6] Cubic surfaces and Borcherds products
    Allcock, D
    Freitag, E
    COMMENTARII MATHEMATICI HELVETICI, 2002, 77 (02) : 270 - 296
  • [7] On the converse theorem for Borcherds products
    Bruinier, Jan Hendrik
    JOURNAL OF ALGEBRA, 2014, 397 : 315 - 342
  • [8] Calculation of Hilbert Borcherds Products
    Mayer, Sebastian
    EXPERIMENTAL MATHEMATICS, 2010, 19 (02) : 243 - 256
  • [9] LATTICES WITH MANY BORCHERDS PRODUCTS
    Bruinier, Jan Hendrik
    Ehlen, Stephan
    Freitag, Eberhard
    MATHEMATICS OF COMPUTATION, 2016, 85 (300) : 1953 - 1981
  • [10] Real quadratic Borcherds products
    Darmon, Henri
    Vonk, Jan
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2022, 18 (05) : 1803 - 1865