Actor Critic Based Reinforcement Learning for Joint Resource Allocation and Throughput Maximization in 5G RAN Slicing

被引:0
|
作者
Kulkarni, Dhanashree [1 ]
Venkatesan, Mithra [1 ]
Kulkarni, Anju V. [2 ]
机构
[1] Dr DY Patil Inst Technol, Elect & Telecommun, Pune, India
[2] Dayananda Sagar Coll Engn, Elect & Telecommun, Bangalore, India
关键词
Network slicing; Deep actor critic reinforcement learning-network slicing; Resource allocation; FRAMEWORK;
D O I
10.1007/s11277-024-11526-0
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
With the advent of fifth generation (5G) mobile communication network slicing technology, the range of application scenarios is expanding significantly. For 5G to function well, it necessitates little delay, a fast rate of data transfer, and the ability to handle a large number of connections. This demanding service requires the allocation of resources in a dynamic manner, while maintaining a very high level of reliability in terms of Quality of Service (QoS).The applications like autonomous driving, telesurgery, etc. have stringent QoS demands and the present design of slices is not suitable for these services. Therefore, latency has been regarded as a crucial factor in the design of the slices. Conventional optimization algorithms often lack robustness and adaptability to dynamic environments, getting stuck in local optima and failing to generalize to varying conditions. Our solution utilizes Reinforcement Learning (RL) to allocate resources to the slices. The utilization of restricted resources can be optimized through the reconfiguration of slices. The ability of RL to acquire knowledge from the surroundings enables our solution to adjust to varying network conditions, enhance the allocation of resources and improve quality of service over a period of time for different network slices. This study introduces the Deep Actor Critic Reinforcement Learning- Network Slicing (DACRL-NS) technique, which utilizes Deep Actor Critic Reinforcement learning for efficient resource allocation to network slices. The objective is to achieve optimal throughput in the network. If the slices fail to meet the minimum criteria, they will be omitted from the allocation. With increasing training episodes, our Actor-Critic algorithm enhances average cumulative rewards and resource allocation efficiency, demonstrating continuous learning and improved decision-making.The simulated suggested system demonstrates an average throughput improvement of 8.92% and 16.36% with respect to the rate requirement and latency requirement, respectively. The data also demonstrate a 17.14% increase in the overall network throughput.
引用
收藏
页码:623 / 640
页数:18
相关论文
共 50 条
  • [1] Reinforcement Learning Based Resource Allocation for Network Slicing in 5G C-RAN
    Wang, Xiaofei
    Zhang, Tiankui
    [J]. 2019 COMPUTING, COMMUNICATIONS AND IOT APPLICATIONS (COMCOMAP), 2019, : 106 - 111
  • [2] Learning From Peers: Deep Transfer Reinforcement Learning for Joint Radio and Cache Resource Allocation in 5G RAN Slicing
    Zhou, Hao
    Erol-Kantarci, Melike
    Poor, H. Vincent
    [J]. IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2022, 8 (04) : 1925 - 1941
  • [3] Reinforcement Learning for Slicing in a 5G Flexible RAN
    Raza, Muhammad Rehan
    Natalino, Carlos
    Ohlen, Peter
    Wosinska, Lena
    Monti, Paolo
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2019, 37 (20) : 5161 - 5169
  • [4] Deep reinforcement learning based flexible preamble allocation for RAN slicing in 5G networks
    Gedikli, Ahmet Melih
    Koseoglu, Mehmet
    Sen, Sevil
    [J]. COMPUTER NETWORKS, 2022, 215
  • [5] Slicing Resource Allocation for eMBB and URLLC in 5G RAN
    Ma, Tengteng
    Zhang, Yong
    Wang, Fanggang
    Wang, Dong
    Guo, Da
    [J]. WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2020, 2020
  • [6] Hierarchical Reinforcement Learning Based Resource Allocation for RAN Slicing
    Anil Akyildiz, Hasan
    Faruk Gemici, Omer
    Hokelek, Ibrahim
    Ali Cirpan, Hakan
    [J]. IEEE ACCESS, 2024, 12 : 75818 - 75831
  • [7] Towards green machine learning for resource allocation in beyond 5G RAN slicing
    Oliveira, Afonso
    Vazao, Teresa
    [J]. COMPUTER NETWORKS, 2023, 233
  • [8] Real-Time Resource Slicing for 5G RAN via Deep Reinforcement Learning
    Xi, Ranran
    Chen, Xin
    Chen, Ying
    Li, Zhuo
    [J]. 2019 IEEE 25TH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS (ICPADS), 2019, : 625 - 632
  • [9] Reinforcement Learning-based Joint Power and Resource Allocation for URLLC in 5G
    Elsayed, Medhat
    Erol-Kantarci, Melike
    [J]. 2019 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2019,
  • [10] Transfer Learning-Based Accelerated Deep Reinforcement Learning for 5G RAN Slicing
    Nagib, Ahmad M.
    Abou-Zeid, Hatem
    Hassanein, Hossam S.
    [J]. PROCEEDINGS OF THE IEEE 46TH CONFERENCE ON LOCAL COMPUTER NETWORKS (LCN 2021), 2021, : 249 - 256