Data-Enabled Predictive Iterative Control

被引:0
|
作者
Zhang, Kai [1 ]
Zuliani, Riccardo [1 ]
Balta, Efe C. [1 ,2 ]
Lygeros, John [1 ]
机构
[1] Swiss Fed Inst Technol, Automat Control Lab IfA, CH-8092 Zurich, Switzerland
[2] Inspire AG, Control & Automat, CH-8092 Zurich, Switzerland
来源
基金
瑞士国家科学基金会;
关键词
Trajectory; Costs; Iterative methods; Predictive control; Task analysis; Linear systems; Prediction algorithms; Data-driven control; iterative learning control; model predictive control; active exploration; LINEAR-SYSTEMS; DESIGN;
D O I
10.1109/LCSYS.2024.3408073
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This letter introduces the Data-Enabled Predictive iteRative Control (DeePRC) algorithm, a direct data-driven approach for iterative LTI systems. The DeePRC learns from previous iterations to improve its performance and achieves the optimal cost. By utilizing a tube-based variation of the DeePRC scheme, we propose a two-stage approach that enables safe active exploration using a left-kernel-based input disturbance design. This method generates informative trajectories to enrich the historical data, which extends the maximum achievable prediction horizon and leads to faster iteration convergence. In addition, we present an end-to-end formulation of the two-stage approach, integrating the disturbance design procedure into the planning phase. We showcase the effectiveness of the proposed algorithms on a numerical experiment.
引用
收藏
页码:1186 / 1191
页数:6
相关论文
共 50 条
  • [1] Data-enabled predictive control for quadcopters
    Elokda, Ezzat
    Coulson, Jeremy
    Beuchat, Paul N.
    Lygeros, John
    Dorfler, Florian
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2021, 31 (18) : 8916 - 8936
  • [2] Data-Enabled Predictive Control: In the Shallows of the DeePC
    Coulson, Jeremy
    Lygeros, John
    Doerfler, Florian
    [J]. 2019 18TH EUROPEAN CONTROL CONFERENCE (ECC), 2019, : 307 - 312
  • [3] On the relationship between data-enabled predictive control and subspace predictive control
    Fiedler, Felix
    Lucia, Sergio
    [J]. 2021 EUROPEAN CONTROL CONFERENCE (ECC), 2021, : 222 - 229
  • [4] Dimension Reduction for Efficient Data-Enabled Predictive Control
    Zhang, Kaixiang
    Zheng, Yang
    Shang, Chao
    Li, Zhaojian
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2023, 7 : 3277 - 3282
  • [5] Regularized and Distributionally Robust Data-Enabled Predictive Control
    Coulson, Jeremy
    Lygeros, John
    Dorfler, Florian
    [J]. 2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 2696 - 2701
  • [6] An Extended Kalman Filter for Data-Enabled Predictive Control
    Alpago, Daniele
    Dorfler, Florian
    Lygeros, John
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2020, 4 (04): : 994 - 999
  • [7] Closed-loop data-enabled predictive control
    Umenberger, Jack
    [J]. 2021 AMERICAN CONTROL CONFERENCE (ACC), 2021, : 3358 - 3365
  • [8] Data-Enabled Predictive Control for Building HVAC Systems
    Chinde, Venkatesh
    Lin, Yashen
    Ellis, Matthew J.
    [J]. JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2022, 144 (08):
  • [9] Data-enabled Predictive Control for Empty Vehicle Rebalancing
    Zhu, Pengbo
    Ferrari-Trecate, Giancarlo
    Geroliminis, Nikolas
    [J]. 2023 EUROPEAN CONTROL CONFERENCE, ECC, 2023,
  • [10] Closed-loop Aspects of Data-Enabled Predictive Control
    Dinkla, Rogier
    Mulders, Sebastiaan P.
    van Wingerden, Jan-Willem
    Oomen, Tom
    [J]. IFAC PAPERSONLINE, 2023, 56 (02): : 1388 - 1393