Analysis of cutting tool geometry induced machining response, surface integrity and anisotropy relation of additively manufactured 316L stainless steel

被引:2
|
作者
Kitay, Ozhan [1 ,2 ]
Kaynak, Yusuf [3 ]
机构
[1] Bilecik Seyh Edebali Univ, Dept Machine & Met Technol, TR-11100 Bilecik, Turkiye
[2] Marmara Univ, Inst Pure & Appl Sci, Dept Mech Engn, Goztepe Campus, TR-34722 Kadikoy, Istanbul, Turkiye
[3] Marmara Univ, Fac Technol, Dept Mech Engn, TR-34854 Maltepe, Istanbul, Turkiye
关键词
Additive manufacturing; Stainless steel; Tool geometry; Anisotropy; Surface integrity; Strain rate; WEAR BEHAVIOR; DRY; MICROSTRUCTURE; PARAMETERS;
D O I
10.1016/j.jmapro.2024.04.054
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Although the machining responses of additively manufactured (AM) materials generally differ from wrought materials due to their microstructural properties, there is no study examining the effects of varying cutting tool rake angles in the machining of AM 316L stainless steel material. The aim of this paper is to evaluate the effects of machining using varying cutting tool rake angles and cutting speeds on the cutting response in terms of cutting force, tool wear, chip morphology and surface integrity characteristics such as microstructure, micro-hardness and x-ray diffraction (XRD) analysis of powder bed fusion - laser beam (PBF-LB) 316L. The effect of the tool rake angle on the anisotropic structure of the material was revealed by examining the machining-induced affected layer from both the built and scan planes and by comparing it with the wrought material. The findings showed that PBF-LB 316L behaves more abrasively than the wrought, creating higher cutting force and tool wear due to the differences in the friction coefficient and thermal conductivity of the materials. Although the machining-induced affected layer is not the same in the built and scan planes of the PBF-LB material due to anisotropy, it is considerably higher compared to the wrought material, especially at negative rake angles. While the hardness of PBF-LB material is higher at a low cutting speed and negative rake angle, the hardening capacity of wrought material is higher at high cutting speed and negative rake angle. PBF-LB chips have repeated adiabatic shear bands and the secondary deformation zone is more evident in wrought chips.
引用
收藏
页码:719 / 732
页数:14
相关论文
共 50 条
  • [1] Surface integrity of consecutive shot-peened additively manufactured 316L stainless steel
    Haribaskar, R.
    Sampath Kumar, T.
    MATERIALS AND MANUFACTURING PROCESSES, 2024, 39 (13) : 1817 - 1829
  • [2] Mechanical anisotropy of additively manufactured stainless steel 316L: An experimental and numerical study
    Charmi, A.
    Falkenberg, R.
    Avila, L.
    Mohr, G.
    Sommer, K.
    Ulbricht, A.
    Sprengel, M.
    Neumann, R. Saliwan
    Skrotzki, B.
    Evans, A.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 799
  • [3] Fatigue Behavior of Additively Manufactured Stainless Steel 316L
    Avanzini, Andrea
    MATERIALS, 2023, 16 (01)
  • [4] Thermomechanical fatigue of additively manufactured 316L stainless steel
    Babinsky, T.
    Sulak, I.
    Kubena, I.
    Man, J.
    Weiser, A.
    Svabenska, E.
    Englert, L.
    Guth, S.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 869
  • [5] Additively manufactured 316L stainless steel: An efficient electrocatalyst
    Lodhi, M. J. K.
    Deen, K. M.
    Haider, Waseem
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (45) : 24698 - 24704
  • [6] Effects of cutting tool forms on the surface integrity in turning of AISI 316L stainless steel
    Gurbuz, Huseyin
    Seker, Ulvi
    Kafkas, Firat
    JOURNAL OF THE FACULTY OF ENGINEERING AND ARCHITECTURE OF GAZI UNIVERSITY, 2020, 35 (01): : 225 - 240
  • [7] Investigations on the Effect of Layers' Thickness and Orientations in the Machining of Additively Manufactured Stainless Steel 316L
    Dabwan, Abdulmajeed
    Anwar, Saqib
    Al-Samhan, Ali M.
    AlFaify, Abdullah
    Nasr, Mustafa M.
    MATERIALS, 2021, 14 (07)
  • [8] Correlations of Geometry and Infill Degree of Extrusion Additively Manufactured 316L Stainless Steel Components
    Rosnitschek, Tobias
    Seefeldt, Andressa
    Alber-Laukant, Bettina
    Neumeyer, Thomas
    Altstaedt, Volker
    Tremmel, Stephan
    MATERIALS, 2021, 14 (18)
  • [9] Fatigue of additively manufactured 316L stainless steel: The influence of porosity and surface roughness
    Solberg, Klas
    Guan, Shuai
    Razavi, Nima
    Welo, Torgeir
    Chan, Kang Cheung
    Berto, Filippo
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2019, 42 (09) : 2043 - 2052
  • [10] Nested size effects in the nanoindentation response of additively manufactured 316L stainless steel
    Birnbaum, A. J.
    Ryou, H.
    Steuben, J. C.
    Iliopoulos, A. P.
    Wahl, K. J.
    Michopoulos, J. G.
    MATERIALS LETTERS, 2020, 280