Macro-Action-Based Deep Multi-Agent Reinforcement Learning

被引:0
|
作者
Xiao, Yuchen [1 ]
Hoffman, Joshua [1 ]
Amato, Christopher [1 ]
机构
[1] Northeastern Univ, Khoury Coll Comp Sci, Boston, MA 02115 USA
来源
关键词
Multi-Agent; Reinforcement Learning; Macro-Actions; DECENTRALIZED CONTROL;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In real-world multi-robot systems, performing high-quality, collaborative behaviors requires robots to asynchronously reason about high-level action selection at varying time durations. Macro-Action Decentralized Partially Observable Markov Decision Processes (MacDec-POMDPs) provide a general framework for asynchronous decision making under uncertainty in fully cooperative multi-agent tasks. However, multi-agent deep reinforcement learning methods have only been developed for (synchronous) primitive-action problems. This paper proposes two Deep Q-Network (DQN) based methods for learning decentralized and centralized macro-action-value functions with novel macro-action trajectory replay buffers introduced for each case. Evaluations on benchmark problems and a larger domain demonstrate the advantage of learning with macro-actions over primitive-actions and the scalability of our approaches.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Action Markets in Deep Multi-Agent Reinforcement Learning
    Schmid, Kyrill
    Belzner, Lenz
    Gabor, Thomas
    Phan, Thomy
    [J]. ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2018, PT II, 2018, 11140 : 240 - 249
  • [2] Multi-Agent/Robot Deep Reinforcement Learning with Macro-Actions
    Xiao, Yuchen
    Hoffman, Joshua
    Xia, Tian
    Amato, Christopher
    [J]. THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 13965 - 13966
  • [3] Bayesian Action Decoder for Deep Multi-Agent Reinforcement Learning
    Foerster, Jakob N.
    Song, H. Francis
    Hughes, Edward
    Burch, Neil
    Dunning, Iain
    Whiteson, Shimon
    Botvinick, Matthew M.
    Bowling, Michael
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [4] Multi-Agent Reinforcement Learning Algorithm Based on Action Prediction
    童亮
    陆际联
    [J]. Journal of Beijing Institute of Technology, 2006, (02) : 133 - 137
  • [5] Eavesdropping Game Based on Multi-Agent Deep Reinforcement Learning
    Guo, Delin
    Tang, Lan
    Yang, Lvxi
    Liang, Ying-Chang
    [J]. 2022 IEEE 23RD INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATION (SPAWC), 2022,
  • [6] Formation Control of Multi-agent Based on Deep Reinforcement Learning
    Pan, Chao
    Nian, Xiaohong
    Dai, Xunhua
    Wang, Haibo
    Xiong, Hongyun
    [J]. PROCEEDINGS OF 2022 INTERNATIONAL CONFERENCE ON AUTONOMOUS UNMANNED SYSTEMS, ICAUS 2022, 2023, 1010 : 1149 - 1159
  • [7] Multi-agent deep reinforcement learning: a survey
    Sven Gronauer
    Klaus Diepold
    [J]. Artificial Intelligence Review, 2022, 55 : 895 - 943
  • [8] Deep reinforcement learning for multi-agent interaction
    Ahmed, Ibrahim H.
    Brewitt, Cillian
    Carlucho, Ignacio
    Christianos, Filippos
    Dunion, Mhairi
    Fosong, Elliot
    Garcin, Samuel
    Guo, Shangmin
    Gyevnar, Balint
    McInroe, Trevor
    Papoudakis, Georgios
    Rahman, Arrasy
    Schafer, Lukas
    Tamborski, Massimiliano
    Vecchio, Giuseppe
    Wang, Cheng
    Albrecht, Stefano, V
    [J]. AI COMMUNICATIONS, 2022, 35 (04) : 357 - 368
  • [9] HALFTONING WITH MULTI-AGENT DEEP REINFORCEMENT LEARNING
    Jiang, Haitian
    Xiong, Dongliang
    Jiang, Xiaowen
    Yin, Aiguo
    Ding, Li
    Huang, Kai
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 641 - 645
  • [10] Multi-agent deep reinforcement learning: a survey
    Gronauer, Sven
    Diepold, Klaus
    [J]. ARTIFICIAL INTELLIGENCE REVIEW, 2022, 55 (02) : 895 - 943