Decoding the Pair Distribution Function of Uranium in Molten Fluoride Salts from X-Ray Absorption Spectroscopy Data by Machine Learning

被引:1
|
作者
Zheng, Kaifeng [1 ]
Marcella, Nicholas [2 ]
Smith, Anna L. [3 ]
Frenkel, Anatoly I. [1 ,4 ]
机构
[1] SUNY Stony Brook, Dept Mat Sci & Chem Engn, Stony Brook, NY 11794 USA
[2] Univ Illinois, Dept Chem, Urbana, IL 61801 USA
[3] Delft Univ Technol, Dept Radiat Sci & Technol, NL-2629 JB Delft, Netherlands
[4] Brookhaven Natl Lab, Chem Div, Upton, NY 11973 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2024年 / 128卷 / 18期
关键词
EXAFS SPECTRA; FINE-STRUCTURE; DIFFRACTION; XANES; SIMULATION; CATALYSTS; SPACE; ATOMS; STATE;
D O I
10.1021/acs.jpcc.4c01898
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Thermal properties of actinides in molten salts are linked to the strongly disordered local environment of actinide ions. We illustrate both the limitations of the commonly used fitting method for analysis of extended X-ray absorption fine structure (EXAFS) spectra in molten UF4 and a possible solution using an "objective neural network-EXAFS" (ONNE) method. ONNE provides both extraction of the pair distribution function, as validated by its application to the EXAFS spectra calculated on molecular dynamics trajectory, and the EXAFS data reconstruction. The ONNE analysis of the molten UF4 has revealed reduction of the first nearest neighbor U-F coordination number, expansion of the U-F bond length, and smaller contribution to the second shell compared to current molecular dynamics models. This method is therefore an attractive alternative to conventional EXAFS analysis and molecular dynamics simulations for studies of disordered environment of actinides in molten salts.
引用
收藏
页码:7635 / 7642
页数:8
相关论文
共 50 条
  • [1] Understanding improved electrochemical properties in nickel fluoride conversion electrode materials by X-ray absorption spectroscopy and pair distribution function
    Lee, Dae Hoe
    Carroll, Kyler
    Calvin, Scott
    Chapman, Karena
    Chupas, Peter
    Meng, Ying Shirley
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [2] BEYOND THE PAIR DISTRIBUTION FUNCTION IN X-RAY ABSORPTION-SPECTRA
    BENFATTO, M
    NATOLI, CR
    JOURNAL DE PHYSIQUE, 1987, 48 (C-9): : 1077 - 1084
  • [3] Unsupervised machine learning for unbiased chemical classification in X-ray absorption spectroscopy and X-ray emission spectroscopy
    Tetef, Samantha
    Govind, Niranjan
    Seidler, Gerald T.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2021, 23 (41) : 23586 - 23601
  • [4] Absorption of Hydrocarbons on Palladium Catalysts: From Simple Models Towards Machine Learning Analysis of X-ray Absorption Spectroscopy Data
    Usoltsev, Oleg A.
    Bugaev, Aram L.
    Guda, Alexander A.
    Guda, Sergey A.
    Soldatov, Alexander V.
    TOPICS IN CATALYSIS, 2020, 63 (1-2) : 58 - 65
  • [5] Absorption of Hydrocarbons on Palladium Catalysts: From Simple Models Towards Machine Learning Analysis of X-ray Absorption Spectroscopy Data
    Oleg A. Usoltsev
    Aram L. Bugaev
    Alexander A. Guda
    Sergey A. Guda
    Alexander V. Soldatov
    Topics in Catalysis, 2020, 63 : 58 - 65
  • [6] MLstructureMining: a machine learning tool for structure identification from X-ray pair distribution functions
    Kjaer, Emil T. S.
    Anker, Andy S.
    Kirsch, Andrea
    Lajer, Joakim
    Aalling-frederiksen, Olivia
    Billinge, Simon J. L.
    Jensen, Kirsten M. O.
    DIGITAL DISCOVERY, 2024, 3 (05): : 908 - 918
  • [7] Ab Initio Molecular Dynamics Simulations of Amorphous Calcium Carbonate: Interpretation of Pair Distribution Function and X-ray Absorption Spectroscopy Data
    Prange, Micah P.
    Mergelsberg, Sebastian T.
    Kerisit, Sebastien N.
    CRYSTAL GROWTH & DESIGN, 2021, 21 (04) : 2212 - 2221
  • [8] A quantum perturbative pair distribution for determining interatomic potentials from extended x-ray absorption spectroscopy
    Piazza, F
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (45) : 11623 - 11634
  • [9] X-ray absorption spectroscopy combined with machine learning for diagnosis of schistosomiasis cirrhosis
    Fang, Zheng
    Hu, Weifeng
    Wang, Mengyi
    Wang, Renbin
    Zhong, Shuo
    Chen, Siyuan
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2020, 60
  • [10] Speciation of Nanocatalysts Using X-ray Absorption Spectroscopy Assisted by Machine Learning
    Routh, Prahlad K.
    Marcella, Nicholas
    Frenkel, Anatoly I.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (12): : 5653 - 5662