Fractal-fractional order stochastic chaotic model: A synchronization study

被引:4
|
作者
Sathiyaraj, T. [1 ]
Chen, Hao [2 ]
Babu, N. Ramesh [3 ]
Hassanabadi, Hassan [4 ]
机构
[1] UCSI Univ, Inst Actuarial Sci & Data Analyt, Kuala Lumpur 56000, Malaysia
[2] Zunyi Normal Univ, Sch Phys & Elect Sci, Zunyi 563006, Peoples R China
[3] Koneru Lakshmaiah Educ Fdn Deemed Univ, Dept Math, Guntur 522502, India
[4] Shahrood Univ Technol, Fac Phys, Shahrood, Iran
来源
关键词
Fractal-Fractional Derivatives (FFD); Stochastic chaotic systems; Fixed point analysis; Synchronization; NEURAL-NETWORKS; ASYMPTOTIC SYNCHRONIZATION; SYSTEMS; EQUATIONS; DRIVEN;
D O I
10.1016/j.rico.2023.100290
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This manuscript provides the existence and uniqueness of solution and synchronization of fractal dimensional fractional order stochastic chaotic systems in R-n space. Based on fractal-fractional analysis, R-n stochastic settings, fixed point rout, stability theory and suitable feedback controller, a valuable adequate useful sufficient conditions are determined for existence and uniqueness of solution and synchronization study of proposed model. We have addressed the nonlinear terms of the systems under consideration in this study by using local assumptions. The theory's findings are then validated by a numerical simulation.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Numerical solution of a fractal-fractional order chaotic circuit system
    Khan, Muhammad Altaf
    Atangana, A.
    Muhammad, Taseer
    Alzahrani, Ebraheem
    REVISTA MEXICANA DE FISICA, 2021, 67 (05) : 1 - 18
  • [2] A Fractal-Fractional Order Model to Study Multiple Sclerosis: A Chronic Disease
    Shah, Kamal
    Abdalla, Bahaaeldin
    Abdeljawad, Thabet
    Alqudah, Manar A.
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2024, 32 (02)
  • [3] A study on the fractal-fractional tobacco smoking model
    Khan, Hasib
    Alzabut, Jehad
    Shah, Anwar
    Etemad, Sina
    Rezapour, Shahram
    Park, Choonkil
    AIMS MATHEMATICS, 2022, 7 (08): : 13887 - 13909
  • [4] A chaotic study of love dynamics with competition using fractal-fractional operator
    Kumar, Anil
    Shaw, Pawan Kumar
    Kumar, Sunil
    ENGINEERING COMPUTATIONS, 2024, 41 (07) : 1884 - 1907
  • [5] Optimal synchronization of fractal-fractional differentials on chaotic convection for Newtonian and non-Newtonian fluids
    Abro, Kashif Ali
    Atangana, Abdon
    Gomez-Aguilar, J. F.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2023, 232 (14-15): : 2403 - 2414
  • [6] INVESTIGATING FRACTAL-FRACTIONAL MATHEMATICAL MODEL OF TUBERCULOSIS (TB) UNDER FRACTAL-FRACTIONAL CAPUTO OPERATOR
    Qu, Haidong
    Rahman, Mati Ur
    Arfan, Muhammad
    Laouini, Ghaylen
    Ahmadian, Ali
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (05)
  • [7] A fractal-fractional model of Ebola with reinfection
    Adu, Isaac Kwasi
    Wireko, Fredrick Asenso
    Sebil, Charles
    Asamoah, Joshua Kiddy K.
    RESULTS IN PHYSICS, 2023, 52
  • [8] Fractal-fractional and stochastic analysis of norovirus transmission epidemic model with vaccination effects
    Cui, Ting
    Liu, Peijiang
    Din, Anwarud
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [9] Modelling chaotic dynamical attractor with fractal-fractional differential operators
    Jain, Sonal
    El-Khatib, Youssef
    AIMS MATHEMATICS, 2021, 6 (12): : 13689 - 13725
  • [10] Fractal-fractional study of the hepatitis C virus infection model
    Saad, Khaled M.
    Alqhtani, Manal
    Gomez-Aguilar, J. F.
    RESULTS IN PHYSICS, 2020, 19