Forecasting Land Use Dynamics in Talas District, Kazakhstan, Using Landsat Data and the Google Earth Engine (GEE) Platform

被引:0
|
作者
Seitkazy, Moldir [1 ,2 ,3 ]
Beisekenov, Nail [4 ]
Taukebayev, Omirzhan [1 ,2 ,5 ]
Zulpykhanov, Kanat [1 ,2 ,6 ]
Tokbergenova, Aigul [6 ]
Duisenbayev, Salavat [6 ]
Sarybaev, Edil [5 ]
Turymtayev, Zhanarys [1 ,2 ]
机构
[1] Al Farabi Kazakh Natl Univ, Space Technol, 71 Al Farabi Ave, Alma Ata 050040, Kazakhstan
[2] Al Farabi Kazakh Natl Univ, Remote Sensing Ctr, 71 Al Farabi Ave, Alma Ata 050040, Kazakhstan
[3] Politecn Milan, Sch Civil Environm & Land Management Engn, Piazza Leonardo Vinci 32, I-20133 Milan, Italy
[4] Niigata Univ, Grad Sch Sci & Technol, Niigata, Niigata 9502181, Japan
[5] Al Farabi Kazakh Natl Univ, Fac Geog & Environm Sci, Dept Cartog & Geoinformat, 71 Al Farabi Ave, Alma Ata 050040, Kazakhstan
[6] Al Farabi Kazakh Natl Univ, Fac Geog & Environm Sci, Dept Geog Land Management & Cadastre, 71 Al Farabi Ave, Alma Ata 050040, Kazakhstan
关键词
land use; land cover; forecasting; sustainability; remote sensing; GEE; Landsat satellite data; ecological impact;
D O I
10.3390/su16146144
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study employs the robust capabilities of Google Earth Engine (GEE) to analyze and forecast land cover and land use changes in the Talas District, situated within the Zhambyl region of Kazakhstan, for a period spanning from 2000 to 2030. The methodology involves thorough image selection, data filtering, and classification using a Random Forest algorithm based on Landsat imagery. This study identifies significant shifts in land cover classes such as herbaceous wetlands, bare vegetation, shrublands, solonchak, water bodies, and grasslands. A detailed accuracy assessment validates the classification model. The forecast for 2030 reveals dynamic trends, including the decline of herbaceous wetlands, a reversal in bare vegetation, and concerns over water bodies. The 2030 forecast shows dynamic trends, including a projected 334.023 km2 of herbaceous wetlands, 2271.41 km2 of bare vegetation, and a notable reduction in water bodies to 24.0129 km2. In quantifying overall trends, this study observes a decline in herbaceous wetlands, bare vegetation, and approximately 67% fewer water bodies from 2000 to 2030, alongside a rise in grassland areas, highlighting dynamic land cover changes. This research underscores the need for continuous monitoring and research to guide sustainable land use planning and conservation in the Talas District and similar areas.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Multi-temporal analysis of land cover changes using Landsat data through Google Earth Engine platform
    Capolupo, Alessandra
    Monterisi, Cristina
    Saponaro, Mirko
    Tarantino, Eufemia
    [J]. EIGHTH INTERNATIONAL CONFERENCE ON REMOTE SENSING AND GEOINFORMATION OF THE ENVIRONMENT (RSCY2020), 2020, 11524
  • [2] Mapping major land cover dynamics in Beijing using all Landsat images in Google Earth Engine
    Huang, Huabing
    Chen, Yanlei
    Clinton, Nicholas
    Wang, Jie
    Wang, Xiaoyi
    Liu, Caixia
    Gong, Peng
    Yang, Jun
    Bai, Yuqi
    Zheng, Yaomin
    Zhu, Zhiliang
    [J]. REMOTE SENSING OF ENVIRONMENT, 2017, 202 : 166 - 176
  • [3] Mapping of Flood Areas Using Landsat with Google Earth Engine Cloud Platform
    Mehmood, Hamid
    Conway, Crystal
    Perera, Duminda
    [J]. ATMOSPHERE, 2021, 12 (07)
  • [4] Human settlements from Landsat data using Google Earth Engine
    Trianni, G.
    Angiuli, E.
    Lisini, G.
    Gamba, P.
    [J]. 2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014, : 1473 - 1476
  • [5] ELULC-10, a 10 m European Land Use and Land Cover Map Using Sentinel and Landsat Data in Google Earth Engine
    Mirmazloumi, S. Mohammad
    Kakooei, Mohammad
    Mohseni, Farzane
    Ghorbanian, Arsalan
    Amani, Meisam
    Crosetto, Michele
    Monserrat, Oriol
    [J]. REMOTE SENSING, 2022, 14 (13)
  • [6] Tracking dynamics characteristics of tidal flats using landsat time series and Google Earth Engine cloud platform
    Chen, Chao
    Sun, Weiwei
    Yang, Zhaohui
    Yang, Gang
    Jia, Mingming
    Zhang, Zhijiang
    Liang, Jintao
    Chen, Yankun
    Ren, Taohua
    Hu, Xingbai
    Liu, Zhisong
    [J]. RESOURCES CONSERVATION AND RECYCLING, 2024, 209
  • [7] Impact of Land Use and Land Cover (LULC) Changes on Carbon Stocks and Economic Implications in Calabria Using Google Earth Engine (GEE)
    Khachoo, Yasir Hassan
    Cutugno, Matteo
    Robustelli, Umberto
    Pugliano, Giovanni
    [J]. SENSORS, 2024, 24 (17)
  • [8] Exploring the Potential of the Google Earth Engine (GEE) Platform for Analysing Forest Disturbance Patterns with Big Data
    Cinar, Tunahan
    Aydin, Abdurrahim
    [J]. EARTH SCIENCES RESEARCH JOURNAL, 2023, 27 (04) : 437 - 448
  • [9] An Efficient Framework for Producing Landsat-Based Land Surface Temperature Data Using Google Earth Engine
    Wang, Mengmeng
    Zhang, Zhengjia
    Hu, Tian
    Wang, Guizhou
    He, Guojin
    Zhang, Zhaoming
    Li, Hua
    Wu, Zhijie
    Liu, Xiuguo
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 (13) : 4689 - 4701
  • [10] Seasonal Dynamics in Land Surface Temperature in Response to Land Use Land Cover Changes Using Google Earth Engine
    Feng, Lei
    Hussain, Sajjad
    Pricope, Narcisa G.
    Arshad, Sana
    Tariq, Aqil
    Feng, Li
    Mubeen, Muhammad
    Aslam, Rana Waqar
    Fnais, Mohammed S.
    Li, Wenzhao
    El-Askary, Hesham
    [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17 : 17983 - 17997