A new approach for heat transfer coefficient determination in triply periodic minimal surface-based heat exchangers

被引:1
|
作者
Kruzel, M. [1 ]
Dutkowski, K. [1 ]
Bohdal, T. [1 ]
Litwin, A. [1 ]
Sawicki, J. [1 ]
Kepa, E. [1 ]
机构
[1] Koszalin Univ Technol, Dept Mech & Power Engn, Koszalin, Poland
关键词
3D-printed heat exchanger; Heat transfer coefficient; TPMS; Heat flux; FORCED-CONVECTION;
D O I
10.1016/j.icheatmasstransfer.2024.107778
中图分类号
O414.1 [热力学];
学科分类号
摘要
The development of additive manufacturing offers increasing opportunities in heat transfer. A wider range of materials is used in the 3D printing process of heat exchangers based on the Triply Periodic Minimal Surface. Due to the complexity of these structures, it is difficult to precisely determine the values describing the heat transfer process in these devices. One of the parameters describing the heat transfer process in heat exchangers is the heat transfer coefficient. This study describes a new method for determining the heat transfer coefficient in a heat exchanger based on a gyroidal lattice. The proposed new method allows for determining the heat transfer coefficient values without interfering with the internal space of the compact heat exchanger. The developed formula can be used in the indirect method of determining the value of the heat transfer coefficient in two-phase flow with boiling or condensation of the working medium. The thermal tests were carried out in the range of working flow rates 4-24 kg/h; the media temperature was 20 and 50 degrees C, the heat flux was from 0.1 to 0.4 kW. Tests were conducted for laminar flow in the 20 < Re < 200 range.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Assessment of flow and heat transfer of triply periodic minimal surface based heat exchangers
    Wang, Jinghan
    Chen, Kai
    Zeng, Min
    Ma, Ting
    Wang, Qiuwang
    Cheng, Zhilong
    ENERGY, 2023, 282
  • [2] Convective heat transfer correlations for Triply Periodic Minimal Surfaces based heat exchangers
    Brambati, Giovanni
    Guilizzoni, Manfredo
    Foletti, Stefano
    APPLIED THERMAL ENGINEERING, 2024, 242
  • [3] Heat transfer enhancement of water-cooled triply periodic minimal surface heat exchangers
    Li, Wenguang
    Li, Weihong
    Yu, Zhibin
    APPLIED THERMAL ENGINEERING, 2022, 217
  • [4] Heat transfer and pressure drop characteristics of heat exchangers based on triply periodic minimal and periodic nodal surfaces
    Iyer, Jaisree
    Moore, Thomas
    Nguyen, Du
    Roy, Pratanu
    Stolaroff, Joshuah
    Applied Thermal Engineering, 2022, 209
  • [5] Heat transfer and pressure drop characteristics of heat exchangers based on triply periodic minimal and periodic nodal surfaces
    Iyer, Jaisree
    Moore, Thomas
    Nguyen, Du
    Roy, Pratanu
    Stolaroff, Joshuah
    APPLIED THERMAL ENGINEERING, 2022, 209
  • [6] Air Flow Analysis for Triply Periodic Minimal Surface Heat Exchangers
    Kancs, A.
    LATVIAN JOURNAL OF PHYSICS AND TECHNICAL SCIENCES, 2024, 61 (06) : 80 - 91
  • [7] Experimental investigation on heat transfer characteristics of copper heat exchangers based on triply periodic minimal surfaces (TPMS)
    Qian, Chenyi
    Wang, Jiaxuan
    Zhong, Haozhang
    Qiu, Xiang
    Yu, Binbin
    Shi, Junye
    Chen, Jiangping
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2024, 152
  • [8] Modulation of Heat Transfer in a Porous Burner Based on Triply Periodic Minimal Surface
    Cheng, Zhilong
    Li, Song
    Chen, Wei
    Wang, Qiuwang
    ASME JOURNAL OF HEAT AND MASS TRANSFER, 2023, 145 (05):
  • [9] Investigation on uneven flow distribution in triply periodic minimal surface heat exchangers
    Wang, Jinghan
    Sun, Kai
    Zeng, Min
    Wang, Qiuwang
    Cheng, Zhilong
    ENERGY CONVERSION AND MANAGEMENT, 2024, 314
  • [10] Morphology, flow and heat transfer in triply periodic minimal surface based porous structures
    Cheng, Zhilong
    Xu, Ruina
    Jiang, Pei-Xue
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2021, 170