Performance optimization of earth abundant CZTS Kesterite solar cell with efficient interface engineering and back surface field

被引:0
|
作者
Meguellati, Mohamed [1 ]
Bencherif, Hichem [2 ]
Ahmed, Asma [3 ]
Sasikumar, P. [4 ]
Younsi, Ziyad [2 ]
Shahatha, Sara H. [5 ]
Mohammad, M. R. [6 ]
Kashif, Muhammad [7 ]
机构
[1] Univ Mostefa Benboulaid, Fac Technol, Dept Elect Engn, Batna, Algeria
[2] HNS RE2SD, LEREESI Lab, Batna, Algeria
[3] Univ Tabuk, Dept Comp Sci & Informat Technol, Tabuk, Saudi Arabia
[4] Saveetha Inst Med & Tech Sci, Saveetha Sch Engn, Dept Phys, Chennai 602105, India
[5] Middle Tech Univ, Tech Engn Coll, Mat Tech Engn, Baghdad, Iraq
[6] Al Mamoon Univ Coll, Dept Laser & Optoelect Engn, Baghdad, Iraq
[7] Tianjin Univ, Sch Elect & Informat Engn, 92 Weijin Rd, Tianjin 300072, Peoples R China
来源
关键词
Kesterite solar cell; Electron Transport Layer; Band alignment; Interfacial traps; Optimization; BAND ALIGNMENT; LAYER;
D O I
10.1007/s12596-024-01883-1
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this work, we introduce a double CZTS-layered design with a high-performance Electron Transport Layer (ETL) as an effective way to increase the efficiency of Kesterite solar cells. Our modeling methodology comprehensively considers various loss mechanisms, such as radiative recombination, defect and trap densities within the bulk CZTS, and the ETL/CZTS interface. The predictive capabilities of our modeling are validated next to experimental data, showcasing a strong correlation. Exploring key factors influencing solar cell performance, including band alignment, interfacial traps, doping, and the thickness of different device layers, we aim to optimize the solar cell design. Addressing the challenges associated with the CdS/CZTS interface, we investigate alternative eco-friendly window materials like TiO2, ZnO, and In2S3. Our findings highlight that TiO2, with its superior optical and electrical properties, significantly enhances overall solar cell performance. The proposed design effectively mitigates the undesirable effects of recombination, particularly at the CdS/CZTS interface. Besides, the BSF layer improve the device in terms of efficiency by reducing the recombination losses. Comparative analysis reveals a noteworthy increase in efficiency, with our optimized design achieving an impressive 12.75%, surpassing the baseline device efficiency of 8.8%. The advantages of our suggested structure extend to enhanced absorption behavior and decreased recombination effects, marking a significant stride toward more efficient and sustainable Kesterite solar cells.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Over 12% efficient kesterite solar cell via back interface engineering
    Zhao, Yunhai
    Yu, Zixuan
    Hu, Juguang
    Zheng, Zhuanghao
    Ma, Hongli
    Sun, Kaiwen
    Hao, Xiaojing
    Liang, Guangxing
    Fan, Ping
    Zhang, Xianghua
    Su, Zhenghua
    [J]. JOURNAL OF ENERGY CHEMISTRY, 2022, 75 : 321 - 329
  • [2] Over 12% efficient kesterite solar cell via back interface engineering
    Yunhai Zhao
    Zixuan Yu
    Juguang Hu
    Zhuanghao Zheng
    Hongli Ma
    Kaiwen Sun
    Xiaojing Hao
    Guangxing Liang
    Ping Fan
    Xianghua Zhang
    Zhenghua Su
    [J]. Journal of Energy Chemistry, 2022, 75 (12) : 321 - 329
  • [3] Optimization of photovoltaic solar cell performance via the earth abundant Zn3P2 back surface field
    Sadanan
    Babu, Puli Sunny
    Singh, Pravin Kumar
    Thakur, A. K.
    Dwivedi, D. K.
    [J]. OPTIK, 2021, 229
  • [4] Engineering the Band Offsets at the Back Contact Interface for Efficient Kesterite CZTSSe Solar Cells
    Zhang, Afei
    Song, Zhaoyang
    Zhou, Zhengji
    Deng, Yueqing
    Zhou, Wenhui
    Yuan, Shengjie
    Kou, Dongxing
    Zhang, Xin
    Qi, Yafang
    Wu, Sixin
    [J]. ACS APPLIED ENERGY MATERIALS, 2020, 3 (11): : 10976 - 10982
  • [5] Performance Enhancement of Kesterite Solar Cell with Doped-Silicon Back Surface Field Layer
    Chris A. Benisha
    Soumyaranjan Routray
    [J]. Silicon, 2022, 14 : 8045 - 8054
  • [6] Performance Enhancement of Kesterite Solar Cell with Doped-Silicon Back Surface Field Layer
    Benisha, Chris A.
    Routray, Soumyaranjan
    [J]. SILICON, 2022, 14 (13) : 8045 - 8054
  • [7] Numerical simulation of CZTS solar cell with silicon back surface field
    Cherouana, Abdelbaki
    Labbani, Rebiha
    [J]. MATERIALS TODAY-PROCEEDINGS, 2018, 5 (05) : 13795 - 13799
  • [8] Back Contact Engineering for Increased Performance in Kesterite Solar Cells
    Antunez, Priscilla D.
    Bishop, Douglas M.
    Lee, Yun Seog
    Gokmen, Tayfun
    Gunawan, Oki
    Gershon, Talia S.
    Todorov, Teodor K.
    Singh, Saurabh
    Haight, Richard
    [J]. ADVANCED ENERGY MATERIALS, 2017, 7 (15)
  • [9] Numerical modeling of AZTS as buffer layer in CZTS solar cells with back surface field for the improvement of cell performance
    Jamil, M.
    Amami, Mongi
    Ali, A.
    Mahmood, K.
    Amin, N.
    [J]. SOLAR ENERGY, 2022, 231 : 41 - 46
  • [10] Kesterite CZTS based thin film solar cell: Generation, recombination, and performance analysis
    Chauhan, Pratibha
    Agarwal, Surbhi
    Srivastava, Vaibhava
    Sadanand, M. Khalid
    Hossain, M. Khalid
    Pandey, Rahul
    Madan, Jaya
    Lohia, Pooja
    Dwivedi, D. K.
    Amami, Mongi
    [J]. JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2023, 183