Tea saponin co-ball milled commercial micro zero-valent iron for boosting Cr(VI) removal

被引:6
|
作者
Wang, Xiaobing [1 ]
Yuan, Shangbin [1 ]
Kong, Jiajia [1 ]
Chen, Cailan [1 ]
Yu, Chaozhen [1 ]
Huang, Lizhen [1 ]
Sun, Hongwei [2 ]
Peng, Xing [2 ]
Hu, Yue [1 ]
机构
[1] Shaoguan Univ, Sch Chem & Civil Engn, Shaoguan 512023, Peoples R China
[2] Cent China Normal Univ, Inst Environm & Appl Chem, Coll Chem, Key Lab Pesticide & Chem Biol,Minist Educ, Wuhan 430079, Peoples R China
关键词
Micro zero-valent iron; Tea saponin; Hydrophobicity; Electron selectivity; ENVIRONMENTAL REMEDIATION; REDUCTION; NANOPARTICLES; EFFICIENCY; COMPOSITE; TOXICITY;
D O I
10.1016/j.jhazmat.2024.134668
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Tea saponins (TS), a natural biosurfactant extracted from tea trees, were co-ball milled with commercial micro zero-valent iron (mZVI) to produce TS modified mZVI (TS-BZVI) for efficient hexavalent chromium (Cr(VI)) removal. The findings demonstrated that TS-BZVI could nearly remove 100% of Cr(VI) within 2 h, which was 1.43 times higher than that by ball milled mZVI (BZVI) (70%). Kinetics analysis demonstrated a high degree of compatibility with the pseudo-second-order (PSO), revealing that TS-BZVI exhibited a 2.83 times faster Cr(VI) removal rate involved primarily chemisorption. Further, X-ray photoelectron spectroscopy (XPS) and X-ray absorption near edge structure (XANES) measurements indicated that the TS co-ball milling process improved the exposure of Fe(II) and Fe(0) on mZVI, which further promoted the Cr(VI) reduction process. Impressively, the introduction of TS increased the hydrophobicity of ZVI, effectively inhibiting the H2 evolution by 95%, thus improved electron selectivity for efficient Cr(VI) removal. Ultimately, after operating for 10 days, a simulated permeable reactive barrier (PRB) column experiment revealed that TS-BZVI had a higher Cr(VI) elimination efficiency than BZVI, indicating that TS-BZVI was promising for practical environment remediation.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Competitive effects of trichloroethylene on Cr(VI) removal by zero-valent iron
    Lo, IMC
    Lam, CSC
    Lai, KCK
    JOURNAL OF ENVIRONMENTAL ENGINEERING, 2005, 131 (11) : 1598 - 1606
  • [2] Removal of Aqueous Cr(VI) by Tea Stalk Biochar Supported Nanoscale Zero-Valent Iron: Performance and Mechanism
    Mao, Yujie
    Tao, Yufang
    Zhang, Xulin
    Chu, Zhaopeng
    Zhang, Xinyi
    Huang, He
    WATER AIR AND SOIL POLLUTION, 2023, 234 (03):
  • [3] Removal of Aqueous Cr(VI) by Tea Stalk Biochar Supported Nanoscale Zero-Valent Iron: Performance and Mechanism
    Yujie Mao
    Yufang Tao
    Xulin Zhang
    Zhaopeng Chu
    Xinyi Zhang
    He Huang
    Water, Air, & Soil Pollution, 2023, 234
  • [4] Oxalate Modification Dramatically Promoted Cr(VI) Removal with Zero-Valent Iron
    Liao, Minzi
    Wang, Xiaobing
    Cao, Shiyu
    Li, Meiqi
    Peng, Xing
    Zhang, Lizhi
    ACS ES&T WATER, 2021, 1 (09): : 2109 - 2118
  • [5] Removal of Cr(VI) by Zero-valent, Iron-encapsulated Alginate Beads
    Wang, Xue Song
    Tang, Yu Jun
    Chen, Li Fang
    Li, Fei Yan
    Wan, Wen Ya
    Bin Tan, Ye
    CLEAN-SOIL AIR WATER, 2010, 38 (03) : 263 - 267
  • [6] Removal of Cr(VI) from Aqueous Solution by Nanoscale Zero-Valent Iron
    Yin, Yanan
    Wang, Jianlong
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2017, 17 (08) : 5864 - 5868
  • [7] Alcohothermal synthesis of sulfidated zero-valent iron for enhanced Cr(VI) removal
    Wang, Zhongsen
    Qiu, Lijun
    Huang, Yunhua
    Zhang, Meng
    Cai, Xi
    Wang, Fanyu
    Lin, Yang
    Shi, Yanbiao
    Liu, Xiao
    CHINESE CHEMICAL LETTERS, 2024, 35 (07)
  • [8] Mechanistic insights into Cr(VI) removal by a combination of zero-valent iron and pyrite
    Zhang, Ruiming
    Napolano, Rossana
    Xi, Beidou
    Salazar, Anne Millicent
    Shi, Qiantao
    Zhao, Ying
    Meng, Xiaoguang
    CHEMOSPHERE, 2023, 330
  • [9] Hardness and carbonate effects on the reactivity of zero-valent iron for Cr(VI) removal
    Lo, IMC
    Lam, CSC
    Lai, KCK
    WATER RESEARCH, 2006, 40 (03) : 595 - 605
  • [10] Removal Performance and Mechanism of Cr(VI) by Zero-Valent Iron Doped Chlorapatite
    Li, Haihua
    Wang, Xinyi
    Zhang, Shenao
    Cheng, Haozu
    Chai, Gaojie
    WATER AIR AND SOIL POLLUTION, 2024, 235 (05):