MAtt: A Manifold Attention Network for EEG Decoding

被引:0
|
作者
Pan, Yue-Ting [1 ]
Chou, Jing-Lun [1 ]
Wei, Chun-Shu [1 ]
机构
[1] Natl Yang Ming Chiao Tung Univ, Hsunchu, Taiwan
关键词
BRAIN-COMPUTER INTERFACES; CLASSIFICATION; ALGORITHMS; GEOMETRY;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recognition of electroencephalographic (EEG) signals highly affect the efficiency of non-invasive brain-computer interfaces (BCIs). While recent advances of deep-learning (DL)-based EEG decoders offer improved performances, the development of geometric learning (GL) has attracted much attention for offering exceptional robustness in decoding noisy EEG data. However, there is a lack of studies on the merged use of deep neural networks (DNNs) and geometric learning for EEG decoding. We herein propose a manifold attention network (MAtt), a novel geometric deep learning (GDL)-based model, featuring a manifold attention mechanism that characterizes spatiotemporal representations of EEG data fully on a Riemannian symmetric positive definite (SPD) manifold. The evaluation of the proposed MAtt on both time-synchronous and -asyncronous EEG datasets suggests its superiority over other leading DL methods for general EEG decoding. Furthermore, analysis of model interpretation reveals the capability of MAtt in capturing informative EEG features and handling the non-stationarity of brain dynamics. Source codes are available at https://github.com/CECNL/MAtt.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] STAnet: A Spatiotemporal Attention Network for Decoding Auditory Spatial Attention From EEG
    Su, Enze
    Cai, Siqi
    Xie, Longhan
    Li, Haizhou
    Schultz, Tanja
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2022, 69 (07) : 2233 - 2242
  • [2] Decoding auditory attention from EEG using a convolutional neural network
    An, Winko W.
    Pei, Alexander
    Noyce, Abigail L.
    Shinn-Cunningham, Barbara
    [J]. 2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 6586 - 6589
  • [3] Auditory Attention Decoding from EEG using Convolutional Recurrent Neural Network
    Fu, Zhen
    Wang, Bo
    Wu, Xihong
    Chen, Jing
    [J]. 29TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2021), 2021, : 970 - 974
  • [4] A CHANNEL ATTENTION BASED MLP-MIXER NETWORK FOR MOTOR IMAGERY DECODING WITH EEG
    He, Yanbin
    Lu, Zhiyang
    Wang, Jun
    Shi, Jun
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 1291 - 1295
  • [5] A multiscale feature fusion network based on attention mechanism for motor imagery EEG decoding
    Gao, Dongrui
    Yang, Wen
    Li, Pengrui
    Liu, Shihong
    Liu, Tiejun
    Wang, Manqing
    Zhang, Yongqing
    [J]. APPLIED SOFT COMPUTING, 2024, 151
  • [6] Manifold Embedded Domain Adaptation for Motor Imagery EEG Decoding
    Jiang, Qin
    Zhang, Yi
    Wang, Wei
    Huang, Qian
    [J]. IAENG International Journal of Computer Science, 2024, 51 (08) : 985 - 997
  • [7] Manifold attention-enhanced multi-domain convolutional network for decoding motor imagery intention
    Lu, Bin
    Huang, Xiaodong
    Chen, Junxiang
    Fu, Rongrong
    Wen, Guilin
    [J]. KNOWLEDGE-BASED SYSTEMS, 2024, 296
  • [8] Decoding Bilingual EEG Signals With Complex Semantics Using Adaptive Graph Attention Convolutional Network
    Li, Chengfang
    Liu, Yang
    Li, Jielin
    Miao, Yuhao
    Liu, Jing
    Song, Liang
    [J]. IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2024, 32 : 249 - 258
  • [9] MSHANet: a multi-scale residual network with hybrid attention for motor imagery EEG decoding
    Li, Mengfan
    Li, Jundi
    Zheng, Xiao
    Ge, Jiahao
    Xu, Guizhi
    [J]. COGNITIVE NEURODYNAMICS, 2024,
  • [10] Motor imagery EEG decoding using manifold embedded transfer learning
    Cai, Yinhao
    She, Qingshan
    Ji, Jiyue
    Ma, Yuliang
    Zhang, Jianhai
    Zhang, Yingchun
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 2022, 370