A Generalized Coordination Engineering Strategy for Single-Atom Catalysts toward Efficient Hydrogen Peroxide Electrosynthesis

被引:0
|
作者
Liu, Wei [1 ]
Chen, Rui [1 ]
Sang, Zhiyuan [1 ]
Li, Zhenxin [1 ]
Nie, Jiahuan [1 ]
Yin, Lichang [2 ]
Hou, Feng [1 ]
Liang, Ji [1 ]
机构
[1] Tianjin Univ, Sch Mat Sci & Engn, Key Lab Adv Ceram & Machining Technol, Minist Educ, Tianjin 300072, Peoples R China
[2] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China
基金
中国国家自然科学基金;
关键词
2e-ORR; metal-organic frameworks; single-atom catalysts; OXYGEN REDUCTION; ELECTROCHEMICAL SYNTHESIS; H2O2;
D O I
10.1002/adma.202406403
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Designing non-noble metal single-atom catalysts (M-SACs) for two-electron oxygen reduction reaction (2e-ORR) is attractive for the hydrogen peroxide (H2O2) electrosynthesis, in which the coordination configuration of the M-SACs essentially affects the reaction activity and product selectivity. Though extensively investigated, a generalized coordination engineering strategy has not yet been proposed, which fundamentally hinders the rational design of M-SACs with optimized catalytic capabilities. Herein, a generalized coordination engineering strategy is proposed for M-SACs toward H2O2 electrosynthesis via introducing heteroatoms (e.g., oxygen or sulfur atoms) with higher or lower electronegativity than nitrogen atoms into the first sphere of metal-N4 system to tailor their electronic structure and adjust the adsorption strength for *OOH intermediates, respectively, thus optimizing their electrocatalytic capability for 2e-ORR. Specifically, the (O, N)-coordinated Co SAC (Co-N3O) and (S, N)-coordinated Ni SAC (Ni-N3S) are precisely synthesized, and both present superior 2e-ORR activity (Eonset: approximate to 0.80 V versus RHE) and selectivity (approximate to 90%) in alkaline conditions compared with conventional Co-N4 and Ni-N4 sites. The high H2O2 yield rates of 14.2 and 17.5 moL g-1 h-1 and long-term stability over 12 h are respectively achieved for Co-N3O and Ni-N3S. Such favorable 2e-ORR pathway of the catalysts is also theoretically confirmed by the kinetics simulations. During the generalized coordination engineering strategy, the representative samples Co-N3O and Ni-N3S are precisely synthesized, and both of them present excellent activity and H2O2 selectivity (approximate to 90%) compared with conventional Metal-N4 configurations. Moreover, they enable a high H2O2 production of 14.2 and 17.5 moL g-1 h-1 in the three-phrase flow cell and maintain a satisfying stability over 12 h. image
引用
下载
收藏
页数:10
相关论文
共 50 条
  • [1] Cobalt single atom catalysts for the efficient electrosynthesis of hydrogen peroxide
    Xu, Hui
    Zhang, Shengbo
    Geng, Jing
    Wang, Guozhong
    Zhang, Haimin
    INORGANIC CHEMISTRY FRONTIERS, 2021, 8 (11): : 2829 - 2834
  • [2] Metal Atom-Support Interaction in Single Atom Catalysts toward Hydrogen Peroxide Electrosynthesis
    Zhang, Hao
    Xu, Haitao
    Yao, Canglang
    Chen, Shanshan
    Li, Feng
    Zhao, Dongyuan
    ACS NANO, 2024, 18 (33) : 21836 - 21854
  • [3] Engineering the Local Atomic Environments of Indium Single-Atom Catalysts for Efficient Electrochemical Production of Hydrogen Peroxide
    Zhang, Erhuan
    Tao, Lei
    An, Jingkun
    Zhang, Jiangwei
    Meng, Lingzhe
    Zheng, Xiaobo
    Wang, Yu
    Li, Nan
    Du, Shixuan
    Zhang, Jiatao
    Wang, Dingsheng
    Li, Yadong
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (12)
  • [4] Enhancing Hydrogen Peroxide Synthesis through Coordination Engineering of Single-Atom Catalysts in the Oxygen Reduction Reaction: A Review
    He, Huawei
    Wang, Jiatang
    Shi, Jiawei
    Li, Jing
    Cai, Weiwei
    ENERGIES, 2023, 16 (18)
  • [5] Effect of the Second-Shell Coordination Environment on the Performance of P-Block Metal Single-Atom Catalysts for the Electrosynthesis of Hydrogen Peroxide
    Wu, Yidi
    Zhang, Yuxiang
    Lin, Sen
    CATALYSTS, 2024, 14 (07)
  • [6] Engineering single-atom catalysts toward biomedical applications
    Chang, Baisong
    Zhang, Liqin
    Wu, Shaolong
    Sun, Ziyan
    Cheng, Zhen
    CHEMICAL SOCIETY REVIEWS, 2022, 51 (09) : 3688 - 3734
  • [7] Single-atom catalysts for the photocatalytic and electrocatalytic synthesis of hydrogen peroxide
    Tang, Xiaolong
    Li, Feng
    Li, Fang
    Jiang, Yanbin
    Yu, Changlin
    CHINESE JOURNAL OF CATALYSIS, 2023, 52 : 79 - 98
  • [8] Coordination engineering for single-atom catalysts in bifunctional oxidation NO and mercury
    Yang, Weijie
    Zhou, Binghui
    Chen, Liugang
    Shi, Ruiyang
    Li, Hao
    Liu, Xiaoshuo
    Gao, Zhengyang
    FUEL, 2023, 349
  • [9] Engineering Single-Atom Cobalt Catalysts toward Improved Electrocatalysis
    Wan, Gang
    Yu, Pengfei
    Chen, Hangrong
    Wen, Jianguo
    Sun, Cheng-jun
    Zhou, Hua
    Zhang, Nian
    Li, Qianru
    Zhao, Wanpeng
    Xie, Bing
    Li, Tao
    Shi, Jianlin
    SMALL, 2018, 14 (15)
  • [10] Ambient Electrosynthesis toward Single-Atom Sites for Electrocatalytic Green Hydrogen Cycling
    Zhao, Xin
    He, Daping
    Xia, Bao Yu
    Sun, Yujie
    You, Bo
    ADVANCED MATERIALS, 2023, 35 (14)