Symmetrical Hermite-Hadamard type inequalities stemming from multiplicative fractional integrals

被引:4
|
作者
Peng, Yu [1 ,2 ]
Ozcan, Serap [3 ]
Du, Tingsong [1 ,2 ]
机构
[1] China Three Gorges Univ, Three Gorges Math Res Ctr, Yichang 443002, Peoples R China
[2] China Three Gorges Univ, Coll Sci, Dept Math, Yichang 443002, Peoples R China
[3] Kirklareli Univ, Fac Sci & Arts, Dept Math, Kirklareli, Turkiye
关键词
Hermite-Hadamard's inequality; Multiplicative Riemann-Liouville fractional integrals; Multiplicative differentiable functions; MACLAURIN-TYPE INEQUALITIES; FEJER TYPE INEQUALITIES; CONVEX-FUNCTIONS; OPERATORS; CALCULUS; MIDPOINT;
D O I
10.1016/j.chaos.2024.114960
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We firstly study *integrability and commutativity for multiplicative fractional integrals with exponential kernels, proposed by Peng et al. (2022). Secondly, making use of such operators, we present a symmetrical multiplicative fractional integrals identity. Based on it, and the fact that the function T* is multiplicatively convex or the function (ln T*)(theta) is convex for theta > 1, especially pondering the case of 0 < theta <= 1, we establish the symmetrical Hermite-Hadamard type inequalities for multiplicative convexity. We also give some applications in special means under multiplicative calculus.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] ON HERMITE-HADAMARD TYPE INEQUALITIES FOR MULTIPLICATIVE FRACTIONAL INTEGRALS
    Budak, H.
    Ozcelik, K.
    MISKOLC MATHEMATICAL NOTES, 2020, 21 (01) : 91 - 99
  • [2] Hermite-Hadamard type inequalities for multiplicative Riemann-Liouville fractional integrals
    Du, Tingsong
    Peng, Yu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 440
  • [3] HERMITE-HADAMARD TYPE INEQUALITIES FOR KATUGAMPOLA FRACTIONAL INTEGRALS
    Wang, Shu-Hong
    Hai, Xu-Ran
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2023, 13 (04): : 1650 - 1667
  • [4] Hermite-Hadamard type inequalities for conformable fractional integrals
    Khan, M. Adil
    Ali, T.
    Dragomir, S. S.
    Sarikaya, M. Z.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2018, 112 (04) : 1033 - 1048
  • [5] Some New Hermite-Hadamard Type Inequalities Pertaining to Generalized Multiplicative Fractional Integrals
    Kashuri, Artion
    Sahoo, Soubhagya Kumar
    Aljuaid, Munirah
    Tariq, Muhammad
    De La sen, Manuel
    SYMMETRY-BASEL, 2023, 15 (04):
  • [6] Hermite-Hadamard and Hermite-Hadamard-Fejer type inequalities for generalized fractional integrals
    Chen, Hua
    Katugampola, Udita N.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 446 (02) : 1274 - 1291
  • [7] On Hermite-Hadamard Type Inequalities Associated with the Generalized Fractional Integrals
    Ertugral, Fatma
    Sarikaya, Mehmet Zeki
    Budak, Huseyin
    FILOMAT, 2022, 36 (12) : 3981 - 3993
  • [8] On Hermite-Hadamard type inequalities via generalized fractional integrals
    Jleli, Mohamed
    O'Regan, Donal
    Samet, Bessem
    TURKISH JOURNAL OF MATHEMATICS, 2016, 40 (06) : 1221 - 1230
  • [9] Refinements of Hermite-Hadamard Type Inequalities Involving Fractional Integrals
    Wang, JinRong
    Li, Xuezhu
    Zhu, Chun
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2013, 20 (04) : 655 - 666
  • [10] ON HERMITE-HADAMARD TYPE INEQUALITIES VIA KATUGAMPOLA FRACTIONAL INTEGRALS
    Yaldiz, H.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (04): : 773 - 785