CO2 injection-based enhanced methane recovery from carbonate gas reservoirs via deep learning

被引:2
|
作者
Huang, Yize [1 ,2 ,3 ]
Li, Xizhe
Elsworth, Derek [3 ]
Liu, Xiaohua [2 ]
Yu, Pengliang [3 ]
Qian, Chao [4 ]
机构
[1] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[2] PetroChina Res Inst Petr Explorat & Dev, Beijing 100083, Peoples R China
[3] Penn State Univ, EMS Energy Inst, Ctr G3, Dept Energy & Mineral Engn, University Pk, PA 16802 USA
[4] CNPC Chuanqing Drilling Engn Co Ltd, Chengdu 610051, Sichuan, Peoples R China
关键词
CAMBRIAN LONGWANGMIAO FORMATION; FIELD; STORAGE; SEQUESTRATION; DISPERSION; OIL;
D O I
10.1063/5.0212652
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
CO2 injection is a promising technology for enhancing gas recovery (CO2-EGR) that concomitantly reduces carbon emissions and aids the energy transition, although it has not yet been applied commercially at the field scale. We develop an innovative workflow using raw data to provide an effective approach in evaluating CH4 recovery during CO2-EGR. A well-calibrated three-dimensional geological model is generated and validated using actual field data-achieving a robust alignment between history and simulation. We visualize the spread of the CO2 plume and quantitatively evaluate the dynamic productivity to the single gas well. We use three deep learning algorithms to predict the time histories of CO2 rate and CH4 recovery and provide feedback on production wells across various injection systems. The results indicate that CO2 injection can enhance CH4 recovery in water-bearing gas reservoirs-CH4 recovery increases with injection rate escalating. Specifically, the increased injection rate diminishes CO2 breakthrough time while concurrently expanding the swept area. The increased injection rate reduces CO2 breakthrough time and increases the swept area. Deep learning algorithms exhibit superior predictive performance, with the gated recurrent unit model being the most reliable and fastest among the three algorithms, particularly when accommodating injection and production time series, as evidenced by its smallest values for evaluation metrics. This study provides an efficient method for predicting the dynamic productivity before and after CO2 injection, which exhibits a speedup that is 3-4 orders of magnitudes higher than traditional numerical simulation. Such models show promise in advancing the practical application of CO2-EGR technology in gas reservoir development.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Research on CO2 injection for water control and enhanced nature gas recovery in heterogeneous carbonate reservoirs
    Wei, Jie
    Zeng, Daqian
    Song, Zhaojie
    You, Yuchun
    Ren, Haochen
    Shi, Zhiliang
    Cao, Changxiao
    Zhang, Rui
    Wang, Jiaqi
    Li, Peiyu
    Cheng, Kai
    Zhang, Yunfei
    Song, Yilei
    Jiang, Jiatong
    Han, Xiao
    GEOENERGY SCIENCE AND ENGINEERING, 2025, 244
  • [2] Enhanced Gas Recovery and CO2 Storage in Coal Bed Methane Reservoirs with N2 Co-Injection
    Oudinot, Anne Y.
    Riestenberg, David E.
    Koperna, George J., Jr.
    13TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-13, 2017, 114 : 5356 - 5376
  • [3] Recovery Of CO2 from flue gas, CO2 sequestration, and methane production from coalbed methane reservoirs
    Ivory, J
    Gunter, WD
    Law, D
    Wong, S
    Feng, X
    ENVIRONMENT CONSCIOUS MATERIALS - ECOMATERIALS, 2000, : 487 - 501
  • [4] Soaking Process for the Enhanced Methane Recovery of Gas Hydrates via CO2/N2 Gas Injection
    Seo, Young-ju
    Kim, Daeok
    Koh, Dong-Yeun
    Lee, Joo Yong
    Ahn, Taewoong
    Kim, Se-Joon
    Lee, Jaehyoung
    Lee, Huen
    ENERGY & FUELS, 2015, 29 (12) : 8143 - 8150
  • [5] Effect of CO2 adsorption on enhanced natural gas recovery and sequestration in carbonate reservoirs
    Eliebid, Mohammed
    Mahmoud, Mohamed
    Shawabkeh, Reyad
    Elkatatny, Salaheldin
    Hussein, Ibnelwaleed A.
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2018, 55 : 575 - 584
  • [6] Experimental investigation of effects of CO2 injection on enhanced methane recovery in coal seam reservoirs
    Zhang, Xiaogang
    Ranjith, P. G.
    JOURNAL OF CO2 UTILIZATION, 2019, 33 : 394 - 404
  • [7] EXPERIMENTAL STUDY ON ENHANCED OIL RECOVERY BY CO2 INJECTION IN TIGHT GAS RESERVOIRS
    Wang, Huaijing
    Wei, Jiaqiang
    Xu, Haoyin
    Zhang, Pengyu
    FRESENIUS ENVIRONMENTAL BULLETIN, 2022, 31 (12): : 11755 - 11761
  • [8] FRACTIONAL FLOW ANALYSIS OF DISPLACEMENT IN A CO2 ENHANCED GAS RECOVERY PROCESS FOR CARBONATE RESERVOIRS
    Odi, Uchenna
    Gupta, Anuj
    PROCEEDINGS OF THE ASME 31ST INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, 2012, VOL 6, 2012, : 765 - 772
  • [9] Statistical Analysis of Controlling Factors on Enhanced Gas Recovery by CO2 Injection in Shale Gas Reservoirs
    Mansi, Moataz
    Almobarak, Mohamed
    Lagat, Christopher
    Xie, Quan
    ENERGY & FUELS, 2023, 37 (02) : 965 - 976
  • [10] Process modeling of CO2 injection into natural gas reservoirs for carbon sequestration and enhanced gas recovery
    Oldenburg, CM
    Pruess, K
    Benson, SM
    ENERGY & FUELS, 2001, 15 (02) : 293 - 298