Probability inequalities for strongly left-invariant metric semigroups/monoids, including all lie groups

被引:0
|
作者
Khare, Apoorva [1 ,2 ]
机构
[1] Indian Inst Sci, Dept Math, Bangalore 560012, India
[2] Anal & Probabil Res Grp, Bangalore 560012, India
来源
关键词
Metric semigroup; Strongly left-invariant metric semigroup; Left-invariant metric monoid; Hoffmann-J & oslash; rgensen inequality; Ottaviani-Skorohod inequality; Mogul'skii inequality; L & eacute; vy-Ottaviani inequality; vy equivalence; Decreasing rearrangement; Universal constant; CENTRAL-LIMIT-THEOREM; LARGE NUMBERS; SUMS; RING;
D O I
10.1007/s13226-024-00645-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently, a general version of the Hoffmann-J & oslash;rgensen inequality was shown jointly with Rajaratnam [Ann. Probab. 2017], which (a) improved the result even for real-valued variables, but also (b) simultaneously unified and extended several versions in the Banach space literature, including that by Hitczenko-Montgomery-Smith [Ann. Probab. 2001], as well as special cases and variants of results by Johnson-Schechtman [Ann. Probab. 1989] and Klass-Nowicki [Ann. Probab. 2000], in addition to the original versions by Kahane and Hoffmann-J & oslash;rgensen. Moreover, our result with Rajaratnam was in a primitive framework: over all semigroups with a bi-invariant metric; this includes Banach spaces as well as compact and abelian Lie groups. In this note we show the result even more generally: over every semigroup G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {G}}$$\end{document} with a strongly left- (or right-)invariant metric. We also prove some applications of this inequality over such G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {G}}$$\end{document}, extending Banach space-valued versions by Hitczenko and Montgomery-Smith [Ann. Probab. 2001] and by Hoffmann-J & oslash;rgensen [Studia Math. 1974]. Furthermore, we show several other stochastic inequalities - by Ottaviani-Skorohod, Mogul'skii, and L & eacute;vy-Ottaviani - as well as L & eacute;vy's equivalence, again over G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {G}}$$\end{document} as above. This setting of generality for G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {G}}$$\end{document} subsumes not only semigroups with bi-invariant metric (thus extending the previously shown results), but it also means that these results now hold over all Lie groups (equipped with a left-invariant Riemannian metric). We also explain why this primitive setting of strongly left/right-invariant metric semigroups G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {G}}$$\end{document} is equivalent to that of left/right-invariant metric monoids G degrees\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {G}}_\circ $$\end{document}: each such G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {G}}$$\end{document} embeds in some G degrees\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {G}}_\circ $$\end{document}.
引用
收藏
页码:1026 / 1039
页数:14
相关论文
共 50 条