Convex hulls of surfaces in fourspace

被引:0
|
作者
Meroni, Chiara [1 ]
Ranestad, Kristian [2 ]
Sinn, Rainer [3 ]
机构
[1] ETH Inst Theoret Studies, Zurich, Switzerland
[2] Univ Oslo, Oslo, Norway
[3] Univ Leipzig, Leipzig, Germany
关键词
SEVERI VARIETIES;
D O I
10.1007/s13348-024-00444-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This is a case study of the algebraic boundary of convex hulls of varieties. We focus on surfaces in fourspace to showcase new geometric phenomena that neither curves nor hypersurfaces exhibit. Our method is a detailed analysis of a general purpose formula by Ranestad and Sturmfels in the case of smooth real algebraic surfaces of low degree (that are rational over the complex numbers). We study both the complex and the real features of the algebraic boundary of Veronese and Del Pezzo surfaces. The main difficulties and the possible approaches to the case of general surfaces are discussed for and complemented by the example of Bordiga surfaces.
引用
收藏
页数:30
相关论文
共 50 条
  • [1] CONVEX HULLS OF COMPLETE MINIMAL-SURFACES
    XAVIER, F
    [J]. MATHEMATISCHE ANNALEN, 1984, 269 (02) : 179 - 182
  • [2] Convex hulls of spheres and convex hulls of disjoint convex polytopes
    Karavelas, Menelaos I.
    Seidel, Raimund
    Tzanaki, Eleni
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2013, 46 (06): : 615 - 630
  • [3] ON CONVEX HULLS
    SCHAEFER, HH
    [J]. ARCHIV DER MATHEMATIK, 1992, 58 (02) : 160 - 163
  • [4] Convex Hulls of Spheres and Convex Hulls of Convex Polytopes Lying on Parallel Hyperplanes
    Karavelas, Menelaos I.
    Tzanaki, Eleni
    [J]. COMPUTATIONAL GEOMETRY (SCG 11), 2011, : 397 - 406
  • [5] Comparison of convex hulls and box hulls
    Boros, E
    Gurvich, V
    Liu, Y
    [J]. ARS COMBINATORIA, 2005, 77 : 193 - 204
  • [6] Parameter Identification of Bivariate Fractal Interpolation Surfaces by Using Convex Hulls
    Drakopoulos, Vasileios
    Matthes, Dimitrios
    Sgourdos, Dimitrios
    Vijender, Nallapu
    [J]. MATHEMATICS, 2023, 11 (13)
  • [7] Convex hulls of surfaces with boundaries and corners and singularities of transitivity zone in ℝ3
    V. M. Zakalyukin
    A. N. Kurbatskii
    [J]. Proceedings of the Steklov Institute of Mathematics, 2010, 268 : 274 - 293
  • [8] SINGULARITIES OF CONVEX HULLS
    SEDYKH, VD
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 1983, 24 (03) : 447 - 461
  • [9] A THEOREM ON CONVEX HULLS
    HORN, WA
    [J]. JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS SECTION B-MATHEMATICAL SCIENCES, 1969, B 73 (04): : 307 - +
  • [10] ON CONVEX HULLS OF TRANSLATES
    GLICKSBERG, I
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1963, 13 (01) : 97 - &