In situ investigation of moisture sorption mechanism in fuel cell catalyst layers

被引:0
|
作者
Planes, Emilie [1 ]
Peet, Joseph [2 ]
Brubach, Jean-Blaise [3 ]
Porcar, Lionel [4 ]
De Moor, Gilles [1 ]
Iojoiu, Cristina [1 ]
Lyonnard, Sandrine [2 ]
机构
[1] Univ Grenoble Alpes, Univ Savoie Mont Blanc, CNRS, Grenoble INP,LEPMI, F-38000 Grenoble, France
[2] Univ Grenoble Alpes, CEA, CNRS, Grenoble INP,IRIG,SyMMES, F-38000 Grenoble, France
[3] Synchrotron SOLEIL, BP 48, F-91192 Gif Sur Yvette, France
[4] Inst Laue Langevin, Large Scale Struct Grp, 71 Ave Martyrs, F-38042 Grenoble 9, France
来源
ENERGY ADVANCES | 2024年 / 3卷 / 07期
基金
加拿大自然科学与工程研究理事会;
关键词
INFRARED BEAMLINE; CARBON; WATER; ACID; ADSORPTION; ELECTRODE; PERFORMANCE; MORPHOLOGY; TRANSPORT;
D O I
10.1039/d4ya00164h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Research focusing on catalyst layers is critical for enhancing the performance and durability of proton exchange membrane fuel cells. In particular, the role of the ionomer is pivotal but remains poorly explored due to the difficulty to access complex electrode structures. Moreover, perfluorosulfonic acid (PFSA) polymers are usually employed in catalyst layers but their drawbacks have spurred interest in aromatic compounds, which promise improved conductivity and performance. Here we investigated the structure-to-function relationship and interactions in novel catalyst layers using non-perfluorinated sulfonic acid ionomers, e.g. multiblock poly(arylene ether sulfones) bearing perfluorosulfonic acid side chains. By combining dynamic vapor sorption, small-angle neutron scattering and synchrotron humidity-controlled infrared spectroscopy, we accessed the water uptake, nanostructures, and molecular structures in a series of catalyst layers prepared with different loadings of aromatic polymer, as well as reference compounds, e.g. pure membrane and polymer-carbon systems. Our measurements show that the water sorption mechanism in catalyst layers differs from pure ionomers due to catalyst-induced structural changes. We observed that most of the formed ionic species interact primarily with the platinum catalyst and probably locate at the particle-ionomer interface. These results emphasize the need for continued research to advance aromatic-type ionomers in fuel cell technology under realistic conditions.
引用
收藏
页码:1594 / 1611
页数:18
相关论文
共 50 条
  • [1] In situ voltammetric characterization of PEM fuel cell catalyst layers
    Kumpulainen, Heikki
    Peltonen, Terttu
    Koponen, Ulla
    Bergelin, Mikael
    Valkiainen, Matti
    Wasberg, Mikael
    [J]. VTT Tiedotteita - Valtion Teknillinen Tutkimuskeskus, 2002, (2137):
  • [2] Self-flooding behaviors on the fuel cell catalyst surface: an in situ mechanism investigation
    Yang, Yingze
    Qin, Jingshan
    Hu, Kadi
    Luo, Liang
    Kumar, Anuj
    Zhou, Daojin
    Zhuang, Zhongbin
    Li, Hui
    Sun, Xiaoming
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2023, 16 (02) : 491 - 501
  • [3] PEMFC Catalyst Layers: The Role of Micropores and Mesopores on Water Sorption and Fuel Cell Activity
    Soboleva, Tatyana
    Malek, Kourosh
    Xie, Zhong
    Navessin, Titichai
    Holdcroft, Steven
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2011, 3 (06) : 1827 - 1837
  • [4] Effect of Water Sorption on the Electronic Conductivity of Porous Polymer Electrolyte Membrane Fuel Cell Catalyst Layers
    Morris, David R. P.
    Liu, Selina P.
    Gonzalez, David Villegas
    Gostick, Jeff T.
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (21) : 18609 - 18618
  • [5] Microstructure Investigation of Polymer Electrolyte Fuel Cell Catalyst Layers Containing Perfluorosulfonated Ionomer
    Koga, Maito
    Matsumoto, Hidetoshi
    Kunishima, Mitsunori
    Tokita, Masatoshi
    Masunaga, Hiroyasu
    Ohta, Noboru
    Takeuchi, Akihisa
    Mizukado, Junji
    Sugimori, Hidekazu
    Shinohara, Kazuhiko
    Uemura, Suguru
    Yoshida, Toshihiko
    Hirai, Shuichiro
    [J]. MEMBRANES, 2021, 11 (07)
  • [6] Fuel cell cathode catalyst layers from "green" catalyst inks
    Xie, Zhong
    Zhao, Xinsheng
    Adachi, Makoto
    Shi, Zhiqing
    Mashio, Tetsuya
    Ohma, Atsushi
    Shinohara, Kazuhiko
    Holdcroft, Steven
    Navessin, Titichai
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2008, 1 (01) : 184 - 193
  • [7] FUEL 71-The use of polyoxometallates in fuel cell catalyst layers
    Herring, Andrew M.
    Stanis, Ronald J.
    Ferrell, Jack R., III
    Kuo, Mei Chen
    Turner, John A.
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2007, 234
  • [8] Water Uptake of Fuel-Cell Catalyst Layers
    Kusoglu, Ahmet
    Kwong, Anthony
    Clark, Kyle T.
    Gunterman, Haluna P.
    Weber, Adam Z.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (09) : F530 - F535
  • [9] Controlling cracking formation in fuel cell catalyst layers
    Kumano, Naomi
    Kudo, Kenji
    Suda, Akihiko
    Akimoto, Yusuke
    Ishii, Masahiko
    Nakamura, Hiroshi
    [J]. JOURNAL OF POWER SOURCES, 2019, 419 : 219 - 228
  • [10] Transport Resistances in Fuel-Cell Catalyst Layers
    Chowdhury, A.
    Radke, C. J.
    Weber, A. Z.
    [J]. POLYMER ELECTROLYTE FUEL CELLS 17 (PEFC 17), 2017, 80 (08): : 321 - 333