Deep Contrastive Graph Learning with Clustering-Oriented Guidance

被引:0
|
作者
Chen, Mulin [1 ,2 ]
Wang, Bocheng [1 ,2 ]
Li, Xuelong [1 ,2 ]
机构
[1] Northwestern Polytech Univ, Sch Artificial Intelligence Opt & Elect iOPEN, Xian 710072, Shanxi, Peoples R China
[2] Northwestern Polytech Univ, Key Lab Intelligent Interact & Applicat, Minist Ind & Informat Technol, Xian 710072, Shanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph Convolutional Network (GCN) has exhibited remarkable potential in improving graph-based clustering. To handle the general clustering scenario without a prior graph, these models estimate an initial graph beforehand to apply GCN. Throughout the literature, we have witnessed that 1) most models focus on the initial graph while neglecting the original features. Therefore, the discriminability of the learned representation may be corrupted by a low-quality initial graph; 2) the training procedure lacks effective clustering guidance, which may lead to the incorporation of clustering-irrelevant information into the learned graph. To tackle these problems, the Deep Contrastive Graph Learning (DCGL) model is proposed for general data clustering. Specifically, we establish a pseudo-siamese network, which incorporates autoencoder with GCN to emphasize both the graph structure and the original features. On this basis, feature-level contrastive learning is introduced to enhance the discriminative capacity, and the relationship between samples and centroids is employed as the clustering-oriented guidance. Afterward, a two-branch graph learning mechanism is designed to extract the local and global structural relationships, which are further embedded into a unified graph under the cluster-level contrastive guidance. Experimental results on several benchmark datasets demonstrate the superiority of DCGL against state-of-the-art algorithms.
引用
收藏
页码:11364 / 11372
页数:9
相关论文
共 50 条
  • [1] Deep Clustering by Graph Attention Contrastive Learning
    Liu, Ming
    Liu, Cong
    Fu, Xiaoyuan
    Wang, Jing
    Li, Jiankun
    Qi, Qi
    Liao, Jianxin
    [J]. ELECTRONICS, 2023, 12 (11)
  • [2] MICCF: A Mutual Information Constrained Clustering Framework for Learning Clustering-Oriented Feature Representations
    Li, Hongyu
    Zhang, Lefei
    Su, Kehua
    Yu, Wei
    [J]. ACM Transactions on Knowledge Discovery from Data, 2024, 18 (08)
  • [3] Dual Contrastive Learning Network for Graph Clustering
    Peng, Xin
    Cheng, Jieren
    Tang, Xiangyan
    Liu, Jingxin
    Wu, Jiahua
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (08) : 10846 - 10856
  • [4] Deep image clustering with contrastive learning and multi-scale graph convolutional networks
    Xu, Yuankun
    Huang, Dong
    Wang, Chang-Dong
    Lai, Jian-Huang
    [J]. PATTERN RECOGNITION, 2024, 146
  • [5] Graph Contrastive Clustering
    Zhong, Huasong
    Wu, Jianlong
    Chen, Chong
    Huang, Jianqiang
    Deng, Minghua
    Nie, Liqiang
    Lin, Zhouchen
    Hua, Xian-Sheng
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 9204 - 9213
  • [6] Clustering Enhanced Multiplex Graph Contrastive Representation Learning
    Yuan, Ruiwen
    Tang, Yongqiang
    Wu, Yajing
    Zhang, Wensheng
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, : 1 - 15
  • [7] Graph Debiased Contrastive Learning with Joint Representation Clustering
    Zhao, Han
    Yang, Xu
    Wang, Zhenru
    Yang, Erkun
    Deng, Cheng
    [J]. PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 3434 - 3440
  • [8] Graph Clustering with High-Order Contrastive Learning
    Li, Wang
    Zhu, En
    Wang, Siwei
    Guo, Xifeng
    [J]. ENTROPY, 2023, 25 (10)
  • [9] Neighborhood contrastive representation learning for attributed graph clustering
    Wang, Tong
    Wu, Junhua
    Qi, Yaolei
    Qi, Xiaoming
    Guan, Juwei
    Zhang, Yuan
    Yang, Guanyu
    [J]. NEUROCOMPUTING, 2023, 562
  • [10] Graph Joint Representation Clustering via Penalized Graph Contrastive Learning
    Zhao, Zihua
    Wang, Rong
    Wang, Zheng
    Nie, Feiping
    Li, Xuelong
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, : 1 - 12